These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24739216)

  • 21. Effects of the probiotics Lactococcus lacttis (MTCC-440) on Salmonella enteric serovar Typhi in co-culture study.
    Kumar A; Kundu S; Debnath M
    Microb Pathog; 2018 Jul; 120():42-46. PubMed ID: 29704985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Lactococcus lactis capable of respiring in the presence of heme].
    Liang F; Fei L; Guicheng H
    Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1256-9. PubMed ID: 19062653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk.
    Gitton C; Meyrand M; Wang J; Caron C; Trubuil A; Guillot A; Mistou MY
    Appl Environ Microbiol; 2005 Nov; 71(11):7152-63. PubMed ID: 16269754
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry.
    Taymaz-Nikerel H; Borujeni AE; Verheijen PJ; Heijnen JJ; van Gulik WM
    Biotechnol Bioeng; 2010 Oct; 107(2):369-81. PubMed ID: 20506321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nutritional requirements and media development for Lactococcus lactis IL1403.
    Aller K; Adamberg K; Timarova V; Seiman A; Feštšenko D; Vilu R
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5871-81. PubMed ID: 24626960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-controlled cell release and biomass distribution of alginate-immobilized Lactococcus lactis subsp. lactis.
    Klinkenberg G; Lystad KQ; Levine DW; Dyrset N
    J Appl Microbiol; 2001 Oct; 91(4):705-14. PubMed ID: 11576308
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of a partial cell recycling chemostat for continuous production of aroma compounds at near-zero growth rates.
    van Mastrigt O; Egas RA; Lillevang SK; Abee T; Smid EJ
    BMC Res Notes; 2019 Mar; 12(1):173. PubMed ID: 30909948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses.
    Zhang M; Chen J; Zhang J; Du G
    J Sci Food Agric; 2014 Dec; 94(15):3125-33. PubMed ID: 24648035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteome constraints reveal targets for improving microbial fitness in nutrient-rich environments.
    Chen Y; van Pelt-KleinJan E; van Olst B; Douwenga S; Boeren S; Bachmann H; Molenaar D; Nielsen J; Teusink B
    Mol Syst Biol; 2021 Apr; 17(4):e10093. PubMed ID: 33821549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aroma formation in retentostat co-cultures of Lactococcus lactis and Leuconostoc mesenteroides.
    van Mastrigt O; Egas RA; Abee T; Smid EJ
    Food Microbiol; 2019 Sep; 82():151-159. PubMed ID: 31027769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production and separation of dipeptidyl peptidase IV from Lactococcus lactis: scale up for industrial production.
    Ustün O; Ongen G
    Bioprocess Biosyst Eng; 2012 Oct; 35(8):1417-27. PubMed ID: 22847360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of varying nitrogen sources on amino acid synthesis costs in Arabidopsis thaliana under different light and carbon-source conditions.
    Arnold A; Sajitz-Hermstein M; Nikoloski Z
    PLoS One; 2015; 10(2):e0116536. PubMed ID: 25706533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling Neisseria meningitidis B metabolism at different specific growth rates.
    Baart GJ; Willemsen M; Khatami E; de Haan A; Zomer B; Beuvery EC; Tramper J; Martens DE
    Biotechnol Bioeng; 2008 Dec; 101(5):1022-35. PubMed ID: 18942773
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation of acetoin production in metabolically engineered Lactococcus lactis by increasing ATP demand.
    Liu J; Kandasamy V; Würtz A; Jensen PR; Solem C
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9509-9517. PubMed ID: 27344595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The pool of ADP and ATP regulates anaerobic product formation in resting cells of Lactococcus lactis.
    Palmfeldt J; Paese M; Hahn-Hägerdal B; Van Niel EW
    Appl Environ Microbiol; 2004 Sep; 70(9):5477-84. PubMed ID: 15345435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis.
    O'Sullivan E; Condon S
    Appl Environ Microbiol; 1999 Jun; 65(6):2287-93. PubMed ID: 10347003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced production of nisin by co-culture of Lactococcus lactis sub sp. lactis and Yarrowia lipolytica in molasses based medium.
    Ariana M; Hamedi J
    J Biotechnol; 2017 Aug; 256():21-26. PubMed ID: 28694185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis.
    Vido K; Diemer H; Van Dorsselaer A; Leize E; Juillard V; Gruss A; Gaudu P
    J Bacteriol; 2005 Jan; 187(2):601-10. PubMed ID: 15629931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Utilization of (15)N-labelled yeast hydrolysate in Lactococcus lactis IL1403 culture indicates co-consumption of peptide-bound and free amino acids with simultaneous efflux of free amino acids.
    Kevvai K; Kütt ML; Nisamedtinov I; Paalme T
    Antonie Van Leeuwenhoek; 2014 Mar; 105(3):511-22. PubMed ID: 24389760
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein turnover, ureagenesis and gluconeogenesis.
    Schutz Y
    Int J Vitam Nutr Res; 2011 Mar; 81(2-3):101-7. PubMed ID: 22139560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.