These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 24739307)
1. Signatures of natural selection on mutations of residues with multiple posttranslational modifications. Gray VE; Liu L; Nirankari R; Hornbeck PV; Kumar S Mol Biol Evol; 2014 Jul; 31(7):1641-5. PubMed ID: 24739307 [TBL] [Abstract][Full Text] [Related]
2. Rampant purifying selection conserves positions with posttranslational modifications in human proteins. Gray VE; Kumar S Mol Biol Evol; 2011 May; 28(5):1565-8. PubMed ID: 21273632 [TBL] [Abstract][Full Text] [Related]
3. Substrate and Functional Diversity of Protein Lysine Post-translational Modifications. Hao B; Chen K; Zhai L; Liu M; Liu B; Tan M Genomics Proteomics Bioinformatics; 2024 May; 22(1):. PubMed ID: 38862432 [TBL] [Abstract][Full Text] [Related]
4. MLysPRED: graph-based multi-view clustering and multi-dimensional normal distribution resampling techniques to predict multiple lysine sites. Zuo Y; Hong Y; Zeng X; Zhang Q; Liu X Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35953081 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary constraint and disease associations of post-translational modification sites in human genomes. Reimand J; Wagih O; Bader GD PLoS Genet; 2015 Jan; 11(1):e1004919. PubMed ID: 25611800 [TBL] [Abstract][Full Text] [Related]
6. Posttranslational modifications of lysine and evolving role in heart pathologies-recent developments. Stastna M; Van Eyk JE Proteomics; 2015 Mar; 15(5-6):1164-80. PubMed ID: 25430483 [TBL] [Abstract][Full Text] [Related]
7. PTM-SD: a database of structurally resolved and annotated posttranslational modifications in proteins. Craveur P; Rebehmed J; de Brevern AG Database (Oxford); 2014; 2014():. PubMed ID: 24857970 [TBL] [Abstract][Full Text] [Related]
8. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics. Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous Affinity Enrichment of Two Post-Translational Modifications for Quantification and Site Localization. Xie X; Shah S; Holtz A; Rose J; Basisty N; Schilling B J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176209 [TBL] [Abstract][Full Text] [Related]
10. Chiral Posttranslational Modification to Lysine ε-Amino Groups. Moreno-Yruela C; Bæk M; Monda F; Olsen CA Acc Chem Res; 2022 May; 55(10):1456-1466. PubMed ID: 35500056 [TBL] [Abstract][Full Text] [Related]
12. Why always lysine? The ongoing tale of one of the most modified amino acids. Azevedo C; Saiardi A Adv Biol Regul; 2016 Jan; 60():144-150. PubMed ID: 26482291 [TBL] [Abstract][Full Text] [Related]
13. Protein Semisynthesis Provides Access to Tau Disease-Associated Post-translational Modifications (PTMs) and Paves the Way to Deciphering the Tau PTM Code in Health and Diseased States. Haj-Yahya M; Lashuel HA J Am Chem Soc; 2018 May; 140(21):6611-6621. PubMed ID: 29684271 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Posttranslational Modifications in Arabidopsis Proteins and Metabolic Pathways Using the FAT-PTM Database. Blea MN; Wallace IS Methods Mol Biol; 2022; 2499():145-154. PubMed ID: 35696079 [TBL] [Abstract][Full Text] [Related]
15. Nonsynonymous Single-Nucleotide Variations on Some Posttranslational Modifications of Human Proteins and the Association with Diseases. Sun B; Zhang M; Cui P; Li H; Jia J; Li Y; Xie L Comput Math Methods Med; 2015; 2015():124630. PubMed ID: 26495027 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis and prediction of amino acid variations that influence protein posttranslational modifications. Shi S; Wang L; Cao M; Chen G; Yu J Brief Bioinform; 2019 Sep; 20(5):1597-1606. PubMed ID: 29788276 [TBL] [Abstract][Full Text] [Related]
17. Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues. Pan Z; Liu Z; Cheng H; Wang Y; Gao T; Ullah S; Ren J; Xue Y Sci Rep; 2014 Dec; 4():7331. PubMed ID: 25476580 [TBL] [Abstract][Full Text] [Related]
18. Urinary proteins with post-translational modifications. Liu L; Liu X Adv Exp Med Biol; 2015; 845():59-65. PubMed ID: 25355569 [TBL] [Abstract][Full Text] [Related]
19. Impact of Nonsynonymous Single-Nucleotide Variations on Post-Translational Modification Sites in Human Proteins. Gulzar N; Dingerdissen H; Yan C; Mazumder R Methods Mol Biol; 2017; 1558():159-190. PubMed ID: 28150238 [TBL] [Abstract][Full Text] [Related]
20. The next level of complexity: crosstalk of posttranslational modifications. Venne AS; Kollipara L; Zahedi RP Proteomics; 2014 Mar; 14(4-5):513-24. PubMed ID: 24339426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]