BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 24739439)

  • 1. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.
    Qiao ZA; Chai SH; Nelson K; Bi Z; Chen J; Mahurin SM; Zhu X; Dai S
    Nat Commun; 2014 Apr; 5():3705. PubMed ID: 24739439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient polymer molecular sieve for membrane gas separations.
    Carta M; Malpass-Evans R; Croad M; Rogan Y; Jansen JC; Bernardo P; Bazzarelli F; McKeown NB
    Science; 2013 Jan; 339(6117):303-7. PubMed ID: 23329042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation.
    Du N; Cin MM; Pinnau I; Nicalek A; Robertson GP; Guiver MD
    Macromol Rapid Commun; 2011 Apr; 32(8):631-6. PubMed ID: 21480419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-oxidative enhancement of polymeric molecular sieve membranes.
    Song Q; Cao S; Zavala-Rivera P; Lu LP; Li W; Ji Y; Al-Muhtaseb SA; Cheetham AK; Sivaniah E
    Nat Commun; 2013; 4():1918. PubMed ID: 23715277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-based technologies for biogas separations.
    Basu S; Khan AL; Cano-Odena A; Liu C; Vankelecom IF
    Chem Soc Rev; 2010 Feb; 39(2):750-68. PubMed ID: 20111791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide.
    Qiu W; Zhang K; Li FS; Zhang K; Koros WJ
    ChemSusChem; 2014 Apr; 7(4):1186-94. PubMed ID: 24677799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymeric membrane materials: new aspects of empirical approaches to prediction of gas permeability parameters in relation to permanent gases, linear lower hydrocarbons and some toxic gases.
    Malykh OV; Golub AY; Teplyakov VV
    Adv Colloid Interface Sci; 2011 May; 164(1-2):89-99. PubMed ID: 21094931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes.
    Song Q; Cao S; Pritchard RH; Ghalei B; Al-Muhtaseb SA; Terentjev EM; Cheetham AK; Sivaniah E
    Nat Commun; 2014 Sep; 5():4813. PubMed ID: 25186051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation.
    Yong WF; Lee ZK; Chung TS; Weber M; Staudt C; Maletzko C
    ChemSusChem; 2016 Aug; 9(15):1953-62. PubMed ID: 27332951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning microcavities in thermally rearranged polymer membranes for CO2 capture.
    Han SH; Kwon HJ; Kim KY; Seong JG; Park CH; Kim S; Doherty CM; Thornton AW; Hill AJ; Lozano AE; Berchtold KA; Lee YM
    Phys Chem Chem Phys; 2012 Apr; 14(13):4365-73. PubMed ID: 22270868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Molecular Sieve Membranes Derived from Tröger's Base-Based Microporous Polyimide for Gas Separation.
    Wang Z; Ren H; Zhang S; Zhang F; Jin J
    ChemSusChem; 2018 Mar; 11(5):916-923. PubMed ID: 29349873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin Composite Polymeric Membranes for CO
    Benito J; Sánchez-Laínez J; Zornoza B; Martín S; Carta M; Malpass-Evans R; Téllez C; McKeown NB; Coronas J; Gascón I
    ChemSusChem; 2017 Oct; 10(20):4014-4017. PubMed ID: 28877422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Separation of gas mixtures using Co(II) carborane-based porous coordination polymers.
    Bae YS; Spokoyny AM; Farha OK; Snurr RQ; Hupp JT; Mirkin CA
    Chem Commun (Camb); 2010 May; 46(20):3478-80. PubMed ID: 20405064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Cross-Link Density on Carbon Dioxide Separation in Polydimethylsiloxane-Norbornene Membranes.
    Hong T; Niu Z; Hu X; Gmernicki K; Cheng S; Fan F; Johnson JC; Hong E; Mahurin S; Jiang DE; Long B; Mays J; Sokolov A; Saito T
    ChemSusChem; 2015 Nov; 8(21):3595-604. PubMed ID: 26482115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas sorption and barrier properties of polymeric membranes from molecular dynamics and Monte Carlo simulations.
    Cozmuta I; Blanco M; Goddard WA
    J Phys Chem B; 2007 Mar; 111(12):3151-66. PubMed ID: 17388466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEG-imbedded PEO membrane developed by a novel highly efficient strategy toward superior gas transport performance.
    Quan S; Tang YP; Wang ZX; Jiang ZX; Wang RG; Liu YY; Shao L
    Macromol Rapid Commun; 2015 Mar; 36(5):490-5. PubMed ID: 25619384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation.
    Bezzu CG; Carta M; Tonkins A; Jansen JC; Bernardo P; Bazzarelli F; McKeown NB
    Adv Mater; 2012 Nov; 24(44):5930-3. PubMed ID: 22961917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO
    Elhenawy S; Khraisheh M; AlMomani F; Hassan M
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-based gas separation of ethylene/ethylene oxide mixtures for product enrichment in microreactor technology.
    Schiewe B; Staudt-Bickel C; Vuin A; Wegner G
    Chemphyschem; 2001 Apr; 2(4):211-8. PubMed ID: 23696482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanically stable polymer molecular sieve membranes with switchable functionality designed for high CO
    Lee H; Bae TH
    Sci Adv; 2024 Apr; 10(15):eadl2787. PubMed ID: 38608029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.