BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 24739439)

  • 21. The Coordination Nanocages-Integrated Polymer Brush Networks for Flexible Microporous Membranes with Exceptional H
    Liu Y; Xue B; Chen J; Lai Y; Yin P
    Macromol Rapid Commun; 2023 Dec; 44(24):e2300477. PubMed ID: 37814593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon dioxide separation with a two-dimensional polymer membrane.
    Schrier J
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3745-52. PubMed ID: 22734516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsically Microporous Polymer Nanosheets for High-Performance Gas Separation Membranes.
    Tamaddondar M; Foster AB; Luque-Alled JM; Msayib KJ; Carta M; Sorribas S; Gorgojo P; McKeown NB; Budd PM
    Macromol Rapid Commun; 2020 Jan; 41(2):e1900572. PubMed ID: 31846137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BILP-19-An Ultramicroporous Organic Network with Exceptional Carbon Dioxide Uptake.
    Klumpen C; Radakovitsch F; Jess A; Senker J
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28805700
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulose-Based Carbon Molecular Sieve Membranes for Gas Separation: A Review.
    Araújo T; Bernardo G; Mendes A
    Molecules; 2020 Aug; 25(15):. PubMed ID: 32752305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfacial Engineering of Supported Liquid Membranes by Vapor Cross-Linking for Enhanced Separation of Carbon Dioxide.
    Kong LY; Shan WD; Han SL; Zhang T; He LC; Huang K; Dai S
    ChemSusChem; 2018 Jan; 11(1):185-192. PubMed ID: 29193841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Diffusion of methane and carbon dioxide in carbon molecular sieve membranes by multinuclear pulsed field gradient NMR.
    Mueller R; Kanungo R; Kiyono-Shimobe M; Koros WJ; Vasenkov S
    Langmuir; 2012 Jul; 28(27):10296-303. PubMed ID: 22694169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends.
    Chen X; Fan Y; Wu L; Zhang L; Guan D; Ma C; Li N
    Nat Commun; 2021 Oct; 12(1):6140. PubMed ID: 34686671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymers with Side Chain Porosity for Ultrapermeable and Plasticization Resistant Materials for Gas Separations.
    He Y; Benedetti FM; Lin S; Liu C; Zhao Y; Ye HZ; Van Voorhis T; De Angelis MG; Swager TM; Smith ZP
    Adv Mater; 2019 May; 31(21):e1807871. PubMed ID: 30963645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular sieving and sensing with gold nanotube membranes.
    Wirtz M; Parker M; Kobayashi Y; Martin CR
    Chem Rec; 2002; 2(4):259-67. PubMed ID: 12203908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.
    McKeown NB; Budd PM
    Chem Soc Rev; 2006 Aug; 35(8):675-83. PubMed ID: 16862268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes.
    Bruening ML; Dotzauer DM; Jain P; Ouyang L; Baker GL
    Langmuir; 2008 Aug; 24(15):7663-73. PubMed ID: 18507420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon dioxide transport by proteic and facilitated transport membranes.
    Trachtenberg MC; Tu CK; Landers RA; Willson RC; McGregor ML; Laipis PJ; Kennedy JF; Paterson M; Silverman DN; Thomas D; Smith RL; Rudolph FB
    Life Support Biosph Sci; 1999; 6(4):293-302. PubMed ID: 11543269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advancements in Gas Separation for Energy Applications: Exploring the Potential of Polymer Membranes with Intrinsic Microporosity (PIM).
    Astorino C; De Nardo E; Lettieri S; Ferraro G; Pirri CF; Bocchini S
    Membranes (Basel); 2023 Dec; 13(12):. PubMed ID: 38132907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane separations using molecularly imprinted polymers.
    Ulbricht M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 May; 804(1):113-25. PubMed ID: 15093165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Online SAXS investigations of polymeric hollow fibre membranes.
    Pranzas PK; Knöchel A; Kneifel K; Kamusewitz H; Weigel T; Gehrke R; Funari SS; Willumeit R
    Anal Bioanal Chem; 2003 Jul; 376(5):602-7. PubMed ID: 12802562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular discrimination inside polymer nanotubules.
    Savariar EN; Krishnamoorthy K; Thayumanavan S
    Nat Nanotechnol; 2008 Feb; 3(2):112-7. PubMed ID: 18654472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of polymer concentration on the structure and performance of PEI hollow fiber membrane contactor for CO2 stripping.
    Naim R; Ismail AF
    J Hazard Mater; 2013 Apr; 250-251():354-61. PubMed ID: 23474409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups.
    Spruell JM; Wolffs M; Leibfarth FA; Stahl BC; Heo J; Connal LA; Hu J; Hawker CJ
    J Am Chem Soc; 2011 Oct; 133(41):16698-706. PubMed ID: 21919513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mixed-matrix membranes containing functionalized porous metal-organic polyhedrons for the effective separation of CO2-CH4 mixture.
    Ma J; Ying Y; Yang Q; Ban Y; Huang H; Guo X; Xiao Y; Liu D; Li Y; Yang W; Zhong C
    Chem Commun (Camb); 2015 Mar; 51(20):4249-51. PubMed ID: 25669162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.