BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 24739439)

  • 41. Conjugated polymer films for gas separations.
    Anderson MR; Mattes BR; Reiss H; Kaner RB
    Science; 1991 Jun; 252(5011):1412-5. PubMed ID: 17772913
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microchip dialysis of proteins using in situ photopatterned nanoporous polymer membranes.
    Song S; Singh AK; Shepodd TJ; Kirby BJ
    Anal Chem; 2004 Apr; 76(8):2367-73. PubMed ID: 15080749
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective molecular sieving through porous graphene.
    Koenig SP; Wang L; Pellegrino J; Bunch JS
    Nat Nanotechnol; 2012 Nov; 7(11):728-32. PubMed ID: 23042491
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective permeation of hydrogen gas using cellulose nanofibril film.
    Fukuzumi H; Fujisawa S; Saito T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1705-9. PubMed ID: 23594396
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent Advances in Graphene Oxide Membranes for Gas Separation Applications.
    Alen SK; Nam S; Dastgheib SA
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717532
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Porous molecularly imprinted polymer membranes and polymeric particles.
    Sergeyeva TA; Brovko OO; Piletska EV; Piletsky SA; Goncharova LA; Karabanova LV; Sergeyeva LM; El'skaya AV
    Anal Chim Acta; 2007 Jan; 582(2):311-9. PubMed ID: 17386508
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Covalent Organic Frameworks in Separation.
    Das S; Feng J; Wang W
    Annu Rev Chem Biomol Eng; 2020 Jun; 11():131-153. PubMed ID: 32228042
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facilitated transport in hydroxide-exchange membranes for post-combustion CO2 separation.
    Xiong L; Gu S; Jensen KO; Yan YS
    ChemSusChem; 2014 Jan; 7(1):114-6. PubMed ID: 24115729
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ending aging in super glassy polymer membranes.
    Lau CH; Nguyen PT; Hill MR; Thornton AW; Konstas K; Doherty CM; Mulder RJ; Bourgeois L; Liu AC; Sprouster DJ; Sullivan JP; Bastow TJ; Hill AJ; Gin DL; Noble RD
    Angew Chem Int Ed Engl; 2014 May; 53(21):5322-6. PubMed ID: 24740816
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Foam films as thin liquid gas separation membranes.
    Ramanathan M; Müller HJ; Möhwald H; Krastev R
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):633-7. PubMed ID: 21314136
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.
    Richter H; Voss H; Kaltenborn N; Kämnitz S; Wollbrink A; Feldhoff A; Caro J; Roitsch S; Voigt I
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7760-7763. PubMed ID: 28504418
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent advancements in polyurethane-based membranes for gas separation.
    Arshad N; Batool SR; Razzaq S; Arshad M; Rasheed A; Ashraf M; Nawab Y; Nazeer MA
    Environ Res; 2024 Jul; 252(Pt 3):118953. PubMed ID: 38636643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electropolymerization of Molecular-Sieving Polythiophene Membranes for H
    Zhang M; Jing X; Zhao S; Shao P; Zhang Y; Yuan S; Li Y; Gu C; Wang X; Ye Y; Feng X; Wang B
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8768-8772. PubMed ID: 31050847
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation.
    Yi S; Ghanem B; Liu Y; Pinnau I; Koros WJ
    Sci Adv; 2019 May; 5(5):eaaw5459. PubMed ID: 31139751
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly stable porous polymer networks with exceptionally high gas-uptake capacities.
    Yuan D; Lu W; Zhao D; Zhou HC
    Adv Mater; 2011 Aug; 23(32):3723-5. PubMed ID: 21732563
    [No Abstract]   [Full Text] [Related]  

  • 56. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine.
    Yang X; Yao S; Yu M; Jiang JX
    Macromol Rapid Commun; 2014 Apr; 35(8):834-9. PubMed ID: 24504693
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polymeric membranes for aromatic/aliphatic separation processes.
    Pithan F; Staudt-Bickel C; Hess S; Lichtenthaler RN
    Chemphyschem; 2002 Oct; 3(10):856-62. PubMed ID: 12465184
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tailoring sub-3.3 Å ultramicropores in advanced carbon molecular sieve membranes for blue hydrogen production.
    Hu L; Bui VT; Krishnamurthy A; Fan S; Guo W; Pal S; Chen X; Zhang G; Ding Y; Singh RP; Lupion M; Lin H
    Sci Adv; 2022 Mar; 8(10):eabl8160. PubMed ID: 35263122
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation.
    Zhu X; Tian C; Mahurin SM; Chai SH; Wang C; Brown S; Veith GM; Luo H; Liu H; Dai S
    J Am Chem Soc; 2012 Jun; 134(25):10478-84. PubMed ID: 22631446
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A New Pentiptycene-Based Dianhydride and Its High-Free-Volume Polymer for Carbon Dioxide Removal.
    Shamsabadi AA; Seidi F; Nozari M; Soroush M
    ChemSusChem; 2018 Jan; 11(2):472-482. PubMed ID: 29106054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.