BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 24739439)

  • 61. Predictive models for mixed-matrix membrane performance: a review.
    Vinh-Thang H; Kaliaguine S
    Chem Rev; 2013 Jul; 113(7):4980-5028. PubMed ID: 23548158
    [No Abstract]   [Full Text] [Related]  

  • 62. Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves.
    Yuan Y; Sun F; Li L; Cui P; Zhu G
    Nat Commun; 2014 Jun; 5():4260. PubMed ID: 24963967
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ethylcellulose perfluorobutyrate: a highly non-thrombogenic fluoropolymer for gas exchange membranes.
    Petersen RJ; Rozelle LT
    Trans Am Soc Artif Intern Organs; 1975; 21():242-8. PubMed ID: 1145996
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Gas-separation membranes loaded with porous aromatic frameworks that improve with age.
    Lau CH; Konstas K; Thornton AW; Liu AC; Mudie S; Kennedy DF; Howard SC; Hill AJ; Hill MR
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2669-73. PubMed ID: 25586722
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Thin Composite Carbon Molecular Sieve Membranes from a Polymer of Intrinsic Microporosity Precursor.
    Ogieglo W; Furchner A; Ma X; Hazazi K; Alhazmi AT; Pinnau I
    ACS Appl Mater Interfaces; 2019 May; 11(20):18770-18781. PubMed ID: 31042347
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Free-standing membranes via covalent cross-linking of polyelectrolyte multilayers with complementary reactivity.
    Ott P; Trenkenschuh K; Gensel J; Fery A; Laschewsky A
    Langmuir; 2010 Dec; 26(23):18182-8. PubMed ID: 21033763
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves.
    Ghanem BS; Swaidan R; Ma X; Litwiller E; Pinnau I
    Adv Mater; 2014 Oct; 26(39):6696-700. PubMed ID: 25043652
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Actuatable membranes based on polypyrrole-coated vertically aligned carbon nanofibers.
    Fletcher BL; Retterer ST; McKnight TE; Melechko AV; Fowlkes JD; Simpson ML; Doktycz MJ
    ACS Nano; 2008 Feb; 2(2):247-54. PubMed ID: 19206624
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.
    Shen YX; Song W; Barden DR; Ren T; Lang C; Feroz H; Henderson CB; Saboe PO; Tsai D; Yan H; Butler PJ; Bazan GC; Phillip WA; Hickey RJ; Cremer PS; Vashisth H; Kumar M
    Nat Commun; 2018 Jun; 9(1):2294. PubMed ID: 29895901
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Polymers with intrinsic microporosity (PIMs) for targeted CO
    Perry SC; Gateman SM; Malpass-Evans R; McKeown N; Wegener M; Nazarovs P; Mauzeroll J; Wang L; Ponce de León C
    Chemosphere; 2020 Jun; 248():125993. PubMed ID: 32004889
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Covalently interconnected three-dimensional graphene oxide solids.
    Sudeep PM; Narayanan TN; Ganesan A; Shaijumon MM; Yang H; Ozden S; Patra PK; Pasquali M; Vajtai R; Ganguli S; Roy AK; Anantharaman MR; Ajayan PM
    ACS Nano; 2013 Aug; 7(8):7034-40. PubMed ID: 23845011
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Triptycene-based microporous polymer with pending tetrazole moieties for CO2 -capture application.
    Liu L; Zhang J
    Macromol Rapid Commun; 2013 Dec; 34(23-24):1833-7. PubMed ID: 24214288
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular-Sieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by In Situ Polymerization.
    Shao P; Yao R; Li G; Zhang M; Yuan S; Wang X; Zhu Y; Zhang X; Zhang L; Feng X; Wang B
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4401-4405. PubMed ID: 31849167
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Porous graphene as an atmospheric nanofilter.
    Blankenburg S; Bieri M; Fasel R; Müllen K; Pignedoli CA; Passerone D
    Small; 2010 Oct; 6(20):2266-71. PubMed ID: 20814926
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Emergence of molecular recognition phenomena in a simple model of imprinted porous materials.
    Dourado EM; Sarkisov L
    J Chem Phys; 2009 Jun; 130(21):214701. PubMed ID: 19508081
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics.
    Wang Y; Cohen J; Boron WF; Schulten K; Tajkhorshid E
    J Struct Biol; 2007 Mar; 157(3):534-44. PubMed ID: 17306562
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Some problems of the gas permeability of polymeric films with application to the development of membrane oxygenators].
    Osipov OA
    Med Tekh; 1973; 1():21-4. PubMed ID: 4774212
    [No Abstract]   [Full Text] [Related]  

  • 78. Solventless fabrication of porous-on-porous materials.
    Kwong P; Seidel S; Gupta M
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9714-8. PubMed ID: 24073753
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer.
    Culp JT; Sui L; Goodman A; Luebke D
    J Colloid Interface Sci; 2013 Mar; 393():278-85. PubMed ID: 23168045
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultrathin Carbon Molecular Sieve Films and Room-Temperature Oxygen Functionalization for Gas-Sieving.
    Huang S; Villalobos LF; Babu DJ; He G; Li M; Züttel A; Agrawal KV
    ACS Appl Mater Interfaces; 2019 May; 11(18):16729-16736. PubMed ID: 30990645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.