BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 24739480)

  • 1. Analysis of Swine Movement in Four Canadian Regions: Network Structure and Implications for Disease Spread.
    Thakur KK; Revie CW; Hurnik D; Poljak Z; Sanchez J
    Transbound Emerg Dis; 2016 Feb; 63(1):e14-26. PubMed ID: 24739480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network analysis of swine shipments in Ontario, Canada, to support disease spread modelling and risk-based disease management.
    Dorjee S; Revie CW; Poljak Z; McNab WB; Sanchez J
    Prev Vet Med; 2013 Oct; 112(1-2):118-27. PubMed ID: 23896577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of between-farm transmission of porcine reproductive and respiratory syndrome virus in Ontario, Canada using the North American Animal Disease Spread Model.
    Thakur KK; Revie CW; Hurnik D; Poljak Z; Sanchez J
    Prev Vet Med; 2015 Mar; 118(4):413-26. PubMed ID: 25636969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pig transport network in Switzerland: Structure, patterns, and implications for the transmission of infectious diseases between animal holdings.
    Sterchi M; Faverjon C; Sarasua C; Vargas ME; Berezowski J; Bernstein A; Grütter R; Nathues H
    PLoS One; 2019; 14(5):e0217974. PubMed ID: 31150524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pig movements in France: Designing network models fitting the transmission route of pathogens.
    Salines M; Andraud M; Rose N
    PLoS One; 2017; 12(10):e0185858. PubMed ID: 29049305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network analysis of swine movements in a multi-site pig production system in Iowa, USA.
    Passafaro TL; Fernandes AFA; Valente BD; Williams NH; Rosa GJM
    Prev Vet Med; 2020 Jan; 174():104856. PubMed ID: 31786406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship of trade patterns of the Danish swine industry animal movements network to potential disease spread.
    Bigras-Poulin M; Barfod K; Mortensen S; Greiner M
    Prev Vet Med; 2007 Jul; 80(2-3):143-65. PubMed ID: 17383759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A descriptive analysis of swine movements in Ontario (Canada) as a contributor to disease spread.
    Melmer DJ; O'Sullivan TL; Poljak Z
    Prev Vet Med; 2018 Nov; 159():211-219. PubMed ID: 30314784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Descriptive and social network analysis of pig transport data recorded by quality assured pig farms in the UK.
    Smith RP; Cook AJ; Christley RM
    Prev Vet Med; 2013 Feb; 108(2-3):167-77. PubMed ID: 22959427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic contact networks of swine movement in Manitoba, Canada: Characterization and implications for infectious disease spread.
    Augusta C; Taylor GW; Deardon R
    Transbound Emerg Dis; 2019 Sep; 66(5):1910-1919. PubMed ID: 31059200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural vulnerability of the French swine industry trade network to the spread of infectious diseases.
    Rautureau S; Dufour B; Durand B
    Animal; 2012 Jul; 6(7):1152-62. PubMed ID: 23031477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilayer network analysis unravels haulage vehicles as a hidden threat to the British swine industry.
    Porphyre T; Bronsvoort BMC; Gunn GJ; Correia-Gomes C
    Transbound Emerg Dis; 2020 May; 67(3):1231-1246. PubMed ID: 31880086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of contact structures for the spread of infectious diseases in a pork supply chain in northern Germany by dynamic network analysis of yearly and monthly networks.
    Büttner K; Krieter J; Traulsen I
    Transbound Emerg Dis; 2015 Apr; 62(2):188-99. PubMed ID: 23692588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a network based model to simulate the between-farm transmission of the porcine reproductive and respiratory syndrome virus.
    Thakur KK; Sanchez J; Hurnik D; Poljak Z; Opps S; Revie CW
    Vet Microbiol; 2015 Nov; 180(3-4):212-22. PubMed ID: 26464321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Static network analysis of a pork supply chain in Northern Germany-Characterisation of the potential spread of infectious diseases via animal movements.
    Büttner K; Krieter J; Traulsen A; Traulsen I
    Prev Vet Med; 2013 Jul; 110(3-4):418-28. PubMed ID: 23462679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network analysis of cattle and pig movements in Sweden: measures relevant for disease control and risk based surveillance.
    Nöremark M; Håkansson N; Lewerin SS; Lindberg A; Jonsson A
    Prev Vet Med; 2011 May; 99(2-4):78-90. PubMed ID: 21288583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating potential epidemic size following introduction of a long-incubation disease in scale-free connected networks of milking-cow movements in Ontario, Canada.
    Dubé C; Ribble C; Kelton D; McNab B
    Prev Vet Med; 2011 May; 99(2-4):102-11. PubMed ID: 21388696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network analysis of pig movements in Argentina: Identification of key farms in the spread of infectious diseases and their biosecurity levels.
    Alarcón LV; Cipriotti PA; Monterubbianessi M; Perfumo C; Mateu E; Allepuz A
    Transbound Emerg Dis; 2020 May; 67(3):1152-1163. PubMed ID: 31785089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of network analysis and cluster analysis for better prevention and control of swine diseases in Argentina.
    Baron JN; Aznar MN; Monterubbianesi M; Martínez-López B
    PLoS One; 2020; 15(6):e0234489. PubMed ID: 32555649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Social network analysis provides insights into African swine fever epidemiology.
    Lichoti JK; Davies J; Kitala PM; Githigia SM; Okoth E; Maru Y; Bukachi SA; Bishop RP
    Prev Vet Med; 2016 Apr; 126():1-10. PubMed ID: 26848113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.