These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24739943)

  • 1. Key bifurcations of bursting polyrhythms in 3-cell central pattern generators.
    Wojcik J; Schwabedal J; Clewley R; Shilnikov AL
    PLoS One; 2014; 9(4):e92918. PubMed ID: 24739943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Order parameter for bursting polyrhythms in multifunctional central pattern generators.
    Wojcik J; Clewley R; Shilnikov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056209. PubMed ID: 21728632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.
    Rotstein HG; Schneider E; Szczupak L
    J Neurosci; 2017 Sep; 37(38):9149-9159. PubMed ID: 28821650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Could electrical coupling contribute to the formation of cell assemblies?
    Traub RD; Whittington MA; Maier N; Schmitz D; Nagy JI
    Rev Neurosci; 2020 Jan; 31(2):121-141. PubMed ID: 31536035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergent central pattern generator behavior in gap-junction-coupled Hodgkin-Huxley style neuron model.
    Horn KG; Memelli H; Solomon IC
    Comput Intell Neurosci; 2012; 2012():173910. PubMed ID: 23365558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization.
    Zhong G; Shevtsova NA; Rybak IA; Harris-Warrick RM
    J Physiol; 2012 Oct; 590(19):4735-59. PubMed ID: 22869012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the roles of reflexes and central pattern generators in the control and modulation of human locomotion using a physiologically plausible neuromechanical model.
    Di Russo A; Stanev D; Sabnis A; Danner SM; Ausborn J; Armand S; Ijspeert A
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37757805
    [No Abstract]   [Full Text] [Related]  

  • 9. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG.
    Ausborn J; Snyder AC; Shevtsova NA; Rybak IA; Rubin JE
    J Neurophysiol; 2018 Jan; 119(1):96-117. PubMed ID: 28978767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of motoneurone excitability during rhythmic motor outputs.
    Power KE; Lockyer EJ; Forman DA; Button DC
    Appl Physiol Nutr Metab; 2018 Nov; 43(11):1176-1185. PubMed ID: 29522692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and analysis of model CPGs for walking: II. General principles and individual variability.
    Beer RD; Chiel HJ; Gallagher JC
    J Comput Neurosci; 1999; 7(2):119-47. PubMed ID: 10515251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization strategies to obtain smooth gait transitions through biologically plausible central pattern generators.
    Baruzzi V; Lodi M; Storace M
    Phys Rev E; 2024 Jan; 109(1-1):014404. PubMed ID: 38366407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of transitions between locomotor-like and paw shake-like rhythms in a model of a multistable central pattern generator.
    Parker J; Bondy B; Prilutsky BI; Cymbalyuk G
    J Neurophysiol; 2018 Sep; 120(3):1074-1089. PubMed ID: 29766765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Central Pattern Generators: Mechanisms of the Activity and Their Role in the Control of "Automatic" Movements].
    Arshavsky I; Deliagina TG; Orlovsky GN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2015; 65(2):156-87. PubMed ID: 26080596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor Neurons Tune Premotor Activity in a Vertebrate Central Pattern Generator.
    Lawton KJ; Perry WM; Yamaguchi A; Zornik E
    J Neurosci; 2017 Mar; 37(12):3264-3275. PubMed ID: 28219984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusk Melibe leonina.
    Sakurai A; Gunaratne CA; Katz PS
    J Neurophysiol; 2014 Sep; 112(6):1317-28. PubMed ID: 24920032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Recovery of a Locomotor Network after Injury: Plasticity beyond the Central Nervous System.
    Puhl JG; Bigelow AW; Rue MCP; Mesce KA
    eNeuro; 2018; 5(4):. PubMed ID: 30073189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular neuromuscular control of human locomotion by central pattern generator.
    Haghpanah SA; Farahmand F; Zohoor H
    J Biomech; 2017 Feb; 53():154-162. PubMed ID: 28126336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Synaptic Rewiring Demonstrates that Distinct Neural Circuit Configurations Underlie Homologous Behaviors.
    Sakurai A; Katz PS
    Curr Biol; 2017 Jun; 27(12):1721-1734.e3. PubMed ID: 28578931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.