These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 2474)
1. A study of the lysyl residues in the basic pancreatic trypsin inhibitor using 1H nuclear magnetic resonance at 360 Mhz. Brown LR; De Marco A; Wagner G; Wüthrich K Eur J Biochem; 1976 Feb; 62(1):103-7. PubMed ID: 2474 [TBL] [Abstract][Full Text] [Related]
2. Nuclear magnetic resonance determination of intramolecular distances in bovine pancreatic trypsin inhibitor using nitrotyrosine chelation of lanthanides. Marinetti TD; Snyder GH; Sykes BD Biochemistry; 1976 Oct; 15(21):4600-8. PubMed ID: 9977 [TBL] [Abstract][Full Text] [Related]
3. pH and temperature effects on the molecular conformation of the porcine pancreatic secretory trypsin inhibitor as detected by hydrogen-1 nuclear magnetic resonance. De Marco A; Menegatti E; Guarneri M Biochemistry; 1982 Jan; 21(2):222-9. PubMed ID: 6803827 [TBL] [Abstract][Full Text] [Related]
4. 1H nuclear-magnetic-resonance studies of the porcine-pancreatic secretory trypsin inhibitor at 270 MHz. De Marco A; Menegatti E; Guarneri M Eur J Biochem; 1979 Dec; 102(1):185-94. PubMed ID: 520321 [TBL] [Abstract][Full Text] [Related]
5. Complete tyrosine assignments in the high field 1H nuclear magnetic resonance spectrum of the bovine pancreatic trypsin inhibitor. Snyder GH; Rowan R; Karplus S; Sykes BD Biochemistry; 1975 Aug; 14(17):3765-77. PubMed ID: 240394 [TBL] [Abstract][Full Text] [Related]
6. Nitrotyrosine chelation of nuclear magnetic resonance shift probes in proteins: application to bovine pancreatic trypsin inhibitor. Marinetti TD; Snyder GH; Sykes BD Biochemistry; 1977 Feb; 16(4):647-53. PubMed ID: 556950 [TBL] [Abstract][Full Text] [Related]
7. Structural characterization by nuclear magnetic resonance of a reactive-site 13carbon-labelled basic pancreatic trypsin inhibitor with the peptide bond Arg-39--Ala-40 cleaved and Arg-39 removed. Richarz R; Tschesche H; Wüthrich K Eur J Biochem; 1979 Dec; 102(2):563-71. PubMed ID: 527593 [TBL] [Abstract][Full Text] [Related]
8. Analysis of electrostatic interactions and their relationship to conformation and stability of bovine pancreatic trypsin inhibitor. March KL; Maskalick DG; England RD; Friend SH; Gurd FR Biochemistry; 1982 Oct; 21(21):5241-51. PubMed ID: 7171553 [TBL] [Abstract][Full Text] [Related]
9. [Determination and comparative analysis of the conformation of bovine pancreatic trypsin inhibitor and trypsin inhibitors E and K from the data of two-dimensional 1H-NMR spectroscopy]. Sherman SA; Andrianov AM Mol Biol (Mosk); 1985; 19(5):1301-9. PubMed ID: 4079926 [TBL] [Abstract][Full Text] [Related]
10. A 1H nuclear-magnetic-resonance study of the conformation and the molecular dynamics of the glycoprotein cow-colostrum trypsin inhibitor. Wagner G; Wütherich K; Tschesche H Eur J Biochem; 1978 May; 86(1):67-76. PubMed ID: 658047 [TBL] [Abstract][Full Text] [Related]
11. 1H Nmr studies at 360 MHz of the methyl groups in native and chemically modified basic pancreatic trypsin inhibitor (BPTI). De Marco A; Tschesche H; Wagner G; Wüthrich K Biophys Struct Mech; 1977 Sep; 3(3-4):303-15. PubMed ID: 20175 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of a new form of the porcine pancreatic secretory trypsin inhibitor. Biochemical studies and high-resolution 1H-NMR. Menegatti E; Bortolotti F; Minchiotti L; De Marco A Biochim Biophys Acta; 1982 Sep; 707(1):50-8. PubMed ID: 7138878 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics of hydrogen bonds in bovine pancreatic trypsin inhibitor protein. Levitt M Nature; 1981 Nov; 294(5839):379-80. PubMed ID: 7312035 [No Abstract] [Full Text] [Related]
14. 1H-NMR studies of the structure and stability of the bovine pancreatic secretory trypsin inhibitor. De Marco A; Menegatti E; Guarneri M J Biol Chem; 1982 Jul; 257(14):8337-42. PubMed ID: 7085670 [TBL] [Abstract][Full Text] [Related]
15. A 1H nuclear-magnetic-resonance study of the solution conformation of the isoinhibitor K from Helix pomatia. Wagner G; Wüthrich K; Tschesche H Eur J Biochem; 1978 Sep; 89(2):367-77. PubMed ID: 710398 [TBL] [Abstract][Full Text] [Related]
16. Solution structure and dynamics of PEC-60, a protein of the Kazal type inhibitor family, determined by nuclear magnetic resonance spectroscopy. Liepinsh E; Berndt KD; Sillard R; Mutt V; Otting G J Mol Biol; 1994 May; 239(1):137-53. PubMed ID: 8196042 [TBL] [Abstract][Full Text] [Related]
17. Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor. Perkins SJ; Wüthrich K Biochim Biophys Acta; 1979 Feb; 576(2):409-23. PubMed ID: 427198 [TBL] [Abstract][Full Text] [Related]
18. Active site in zymogens. Proton magnetic resonance pH titration curves of histidine-57 in porcine and bovine trypsinogens and in their complexes with bovine pancreatic trypsin inhibitor (Kunitz). Porubcan MA; Neves DE; Rausch SK; Markley JL Biochemistry; 1978 Oct; 17(22):4640-7. PubMed ID: 31899 [No Abstract] [Full Text] [Related]
19. Complete tyrosine assignments in the high-field 1H nuclear magnetic resonance spectrum of bovine pancreatic trypsin inhibitor selectively reduced and carboxamidomethylated at cystine 14-38. Snyder GH; Rowan R; Sykes BD Biochemistry; 1976 Jun; 15(11):2275-83. PubMed ID: 6043 [TBL] [Abstract][Full Text] [Related]
20. Pancreatic trypsin inhibitor. A new crystal form and its analysis. Walter J; Huber R J Mol Biol; 1983 Jul; 167(4):911-7. PubMed ID: 6876171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]