These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 24740104)

  • 1. Foreign body reaction associated with PET and PET/chitosan electrospun nanofibrous abdominal meshes.
    Veleirinho B; Coelho DS; Dias PF; Maraschin M; Pinto R; Cargnin-Ferreira E; Peixoto A; Souza JA; Ribeiro-do-Valle RM; Lopes-da-Silva JA
    PLoS One; 2014; 9(4):e95293. PubMed ID: 24740104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a new dual mesh with an absorbable nanofiber layer as a potential implant for abdominal hernia treatment.
    Kaya M; Ahi ZB; Ergene E; Yilgor Huri P; Tuzlakoglu K
    J Tissue Eng Regen Med; 2020 Feb; 14(2):347-354. PubMed ID: 31826319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preclinical evaluation of alternative synthetic biomaterials for fascial defect repair using a rat abdominal hernia model.
    Ulrich D; Edwards SL; White JF; Supit T; Ramshaw JA; Lo C; Rosamilia A; Werkmeister JA; Gargett CE
    PLoS One; 2012; 7(11):e50044. PubMed ID: 23185528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice.
    Orenstein SB; Saberski ER; Kreutzer DL; Novitsky YW
    J Surg Res; 2012 Aug; 176(2):423-9. PubMed ID: 22099590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nylon-6/chitosan core/shell antimicrobial nanofibers for the prevention of mesh-associated surgical site infection.
    Keirouz A; Radacsi N; Ren Q; Dommann A; Beldi G; Maniura-Weber K; Rossi RM; Fortunato G
    J Nanobiotechnology; 2020 Mar; 18(1):51. PubMed ID: 32188479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue engineered multifunctional chitosan-modified polypropylene hernia mesh loaded with bioactive phyto-extracts.
    Nosheen S; Mukhtar H; Haider S; Khan R; Sharif F
    Int J Biol Macromol; 2024 Jun; 271(Pt 1):132282. PubMed ID: 38750855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A polypropylene mesh modified with poly-ε-caprolactone nanofibers in hernia repair: large animal experiment.
    East B; Plencner M; Kralovic M; Rampichova M; Sovkova V; Vocetkova K; Otahal M; Tonar Z; Kolinko Y; Amler E; Hoch J
    Int J Nanomedicine; 2018; 13():3129-3143. PubMed ID: 29881270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction of polyethylene terephthalate mesh (KoSa hochfest) for abdominal hernia repair: an animal experimental study.
    Zieren J; Neuss H; Paul M; Müller J
    Biomed Mater Eng; 2004; 14(2):127-32. PubMed ID: 15156103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic creep properties of a novel nanofiber hernia mesh in abdominal wall repair.
    East B; Plencner M; Otahal M; Amler E; de Beaux AC
    Hernia; 2019 Oct; 23(5):1009-1015. PubMed ID: 30953212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic double-sided polypropylene mesh modified by DOPA and ofloxacin loaded carboxyethyl chitosan/polyvinyl alcohol-polycaprolactone nanofibers for potential hernia repair applications.
    Shokrollahi M; Bahrami SH; Nazarpak MH; Solouk A
    Int J Biol Macromol; 2020 Dec; 165(Pt A):902-917. PubMed ID: 33011256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Nanofiber Orientation on Morphological and Mechanical Properties of Electrospun Chitosan Mats.
    Nitti P; Gallo N; Natta L; Scalera F; Palazzo B; Sannino A; Gervaso F
    J Healthc Eng; 2018; 2018():3651480. PubMed ID: 30538809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility.
    Chen L; Zhu C; Fan D; Liu B; Ma X; Duan Z; Zhou Y
    J Biomed Mater Res A; 2011 Dec; 99(3):395-409. PubMed ID: 22021187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of three purely polypropylene meshes of different pore sizes in an onlay position in a New Zealand white rabbit model.
    Jerabek J; Novotny T; Vesely K; Cagas J; Jedlicka V; Vlcek P; Capov I
    Hernia; 2014; 18(6):855-64. PubMed ID: 25033941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications.
    Ebersole GC; Buettmann EG; MacEwan MR; Tang ME; Frisella MM; Matthews BD; Deeken CR
    Surg Endosc; 2012 Oct; 26(10):2717-28. PubMed ID: 22538673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering.
    Singh YP; Dasgupta S; Nayar S; Bhaskar R
    J Biomater Sci Polym Ed; 2020 Apr; 31(6):781-803. PubMed ID: 31958253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore size and pore shape--but not mesh density--alter the mechanical strength of tissue ingrowth and host tissue response to synthetic mesh materials in a porcine model of ventral hernia repair.
    Lake SP; Ray S; Zihni AM; Thompson DM; Gluckstein J; Deeken CR
    J Mech Behav Biomed Mater; 2015 Feb; 42():186-97. PubMed ID: 25486631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of TGF-beta1 as a determinant of foreign body reaction to alloplastic materials in rat fibroblast cultures: comparison of different commercially available polypropylene meshes for hernia repair.
    Weyhe D; Hoffmann P; Belyaev O; Mros K; Muller C; Uhl W; Schmitz F
    Regul Pept; 2007 Jan; 138(1):10-4. PubMed ID: 16973225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of better tolerated prosthetic materials: applications in gynecological surgery].
    Debodinance P; Delporte P; Engrand JB; Boulogne M
    J Gynecol Obstet Biol Reprod (Paris); 2002 Oct; 31(6):527-40. PubMed ID: 12407323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term evaluation of adhesion formation and foreign body response to three new meshes.
    Vogels RR; van Barneveld KW; Bosmans JW; Beets G; Gijbels MJ; Schreinemacher MH; Bouvy ND
    Surg Endosc; 2015 Aug; 29(8):2251-9. PubMed ID: 25361655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postimplant behavior of lightweight polypropylene meshes in an experimental model of abdominal hernia.
    Bellon JM; Rodriguez M; Garcia-Honduvilla N; Gomez-Gil V; Pascual G; Bujan J
    J Invest Surg; 2008; 21(5):280-7. PubMed ID: 19160136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.