These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24740526)

  • 1. How microstructures affect air film dynamics prior to drop impact.
    van der Veen RC; Hendrix MH; Tran T; Sun C; Tsai PA; Lohse D
    Soft Matter; 2014 Jun; 10(21):3703-7. PubMed ID: 24740526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry.
    van der Veen RC; Tran T; Lohse D; Sun C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026315. PubMed ID: 22463325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skating on a film of air: drops impacting on a surface.
    Kolinski JM; Rubinstein SM; Mandre S; Brenner MP; Weitz DA; Mahadevan L
    Phys Rev Lett; 2012 Feb; 108(7):074503. PubMed ID: 22401209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetries in the spread of drops impacting on hydrophobic micropillar arrays.
    Robson S; Willmott GR
    Soft Matter; 2016 May; 12(21):4853-65. PubMed ID: 27140067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How superhydrophobicity breaks down.
    Papadopoulos P; Mammen L; Deng X; Vollmer D; Butt HJ
    Proc Natl Acad Sci U S A; 2013 Feb; 110(9):3254-8. PubMed ID: 23382197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air layer during the impact of droplets on heated substrates.
    Qi H; Wang T; Che Z
    Phys Rev E; 2020 Apr; 101(4-1):043114. PubMed ID: 32422751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact and deformation of a viscoelastic drop at the air-liquid interface.
    Pregent S; Adams S; Butler MF; Waigh TA
    J Colloid Interface Sci; 2009 Mar; 331(1):163-73. PubMed ID: 19022453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Underwater sustainability of the "Cassie" state of wetting.
    Bobji MS; Kumar SV; Asthana A; Govardhan RN
    Langmuir; 2009 Oct; 25(20):12120-6. PubMed ID: 19821621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.
    Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C
    Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bouncing-to-wetting transition of water droplets impacting soft solids.
    Mitra S; Vo Q; Tran T
    Soft Matter; 2021 Jun; 17(24):5969-5977. PubMed ID: 34047748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns.
    Visser CW; Frommhold PE; Wildeman S; Mettin R; Lohse D; Sun C
    Soft Matter; 2015 Mar; 11(9):1708-22. PubMed ID: 25607820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from Cassie to impaled state during drop impact on groove-textured solid surfaces.
    Vaikuntanathan V; Sivakumar D
    Soft Matter; 2014 May; 10(17):2991-3002. PubMed ID: 24695648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How micropatterns and air pressure affect splashing on surfaces.
    Tsai P; van der Veen RC; van de Raa M; Lohse D
    Langmuir; 2010 Oct; 26(20):16090-5. PubMed ID: 20860398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.
    Pack M; Kaneelil P; Kim H; Sun Y
    Langmuir; 2018 May; 34(17):4962-4969. PubMed ID: 29620373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics study on the wettability of a hydrophobic surface textured with nanoscale pillars.
    Zhang Z; Kim H; Ha MY; Jang J
    Phys Chem Chem Phys; 2014 Mar; 16(12):5613-21. PubMed ID: 24513852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submillimeter-Sized Bubble Entrapment and a High-Speed Jet Emission during Droplet Impact on Solid Surfaces.
    Chen L; Li L; Li Z; Zhang K
    Langmuir; 2017 Jul; 33(29):7225-7230. PubMed ID: 28661691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.