These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24740612)

  • 1. A particle based model to simulate microscale morphological changes of plant tissues during drying.
    Karunasena HC; Senadeera W; Brown RJ; Gu YT
    Soft Matter; 2014 Aug; 10(29):5249-68. PubMed ID: 24740612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a coupled smoothed particle hydrodynamics (SPH) and coarse-grained (CG) numerical modelling approach to study three-dimensional (3-D) deformations of single cells of different food-plant materials during drying.
    Rathnayaka CM; Karunasena HCP; Senadeera W; Gu YT
    Soft Matter; 2018 Mar; 14(11):2015-2031. PubMed ID: 29376541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-dimensional (3-D) meshfree-based computational model to investigate stress-strain-time relationships of plant cells during drying.
    Rathnayaka CM; Karunasena HCP; Wijerathne WDCC; Senadeera W; Gu YT
    PLoS One; 2020; 15(7):e0235712. PubMed ID: 32634165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle-based model to simulate the micromechanics of biological cells.
    Van Liedekerke P; Tijskens E; Ramon H; Ghysels P; Samaey G; Roose D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061906. PubMed ID: 20866439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coarse-grained multiscale model to simulate morphological changes of food-plant tissues undergoing drying.
    Wijerathne WDCC; Rathnayaka CM; Karunasena HCP; Senadeera W; Sauret E; Turner IW; Gu YT
    Soft Matter; 2019 Jan; 15(5):901-916. PubMed ID: 30543256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-scale simulation of plant stem reinforcement by brachysclereids: A case study in apple fruit peduncles.
    Horbens M; Branke D; Gärtner R; Voigt A; Stenger F; Neinhuis C
    J Struct Biol; 2015 Oct; 192(1):116-26. PubMed ID: 26278981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A particle-based model to simulate the micromechanics of single-plant parenchyma cells and aggregates.
    Van Liedekerke P; Ghysels P; Tijskens E; Samaey G; Smeedts B; Roose D; Ramon H
    Phys Biol; 2010 May; 7(2):026006. PubMed ID: 20505228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics.
    Liu X; Wang R; Li Y; Song D
    Comput Math Methods Med; 2015; 2015():598415. PubMed ID: 26417380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics.
    Shahriari S; Garcia D
    Phys Med Biol; 2018 Oct; 63(20):205011. PubMed ID: 30247153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs.
    Hieber SE; Walther JH; Koumoutsakos P
    Technol Health Care; 2004; 12(4):305-14. PubMed ID: 15502281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.
    Rausch MK; Karniadakis GE; Humphrey JD
    Biomech Model Mechanobiol; 2017 Feb; 16(1):249-261. PubMed ID: 27538848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of cellular water during drying: An understanding of cell rupturing mechanism in apple tissue.
    Khan MIH; Nagy SA; Karim MA
    Food Res Int; 2018 Mar; 105():772-781. PubMed ID: 29433273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smoothed particle hydrodynamic modelling of the cerebrospinal fluid for brain biomechanics: Accuracy and stability.
    Duckworth H; Sharp DJ; Ghajari M
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3440. PubMed ID: 33480161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional multiscale model for gas exchange in fruit.
    Ho QT; Verboven P; Verlinden BE; Herremans E; Wevers M; Carmeliet J; Nicolaï BM
    Plant Physiol; 2011 Mar; 155(3):1158-68. PubMed ID: 21224337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-way coupled SPH and particle level set fluid simulation.
    Losasso F; Talton J; Kwatra N; Fedkiw R
    IEEE Trans Vis Comput Graph; 2008; 14(4):797-804. PubMed ID: 18467755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPH-based numerical simulations of flow slides in municipal solid waste landfills.
    Huang Y; Dai Z; Zhang W; Huang M
    Waste Manag Res; 2013 Mar; 31(3):256-64. PubMed ID: 23315367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forced and natural convective drying of trehalose/water thin films: implication in the desiccation preservation of Mammalian cells.
    Chen B; Fowler A; Bhowmick S
    J Biomech Eng; 2006 Jun; 128(3):335-46. PubMed ID: 16706583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of water loss and viscoelastic deformation of apple tissue using a multiscale model.
    Aregawi WA; Abera MK; Fanta SW; Verboven P; Nicolai B
    J Phys Condens Matter; 2014 Nov; 26(46):464111. PubMed ID: 25347182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPH numerical simulation of non-steady sand ripple wind-sand flow structure.
    Hu X; Jin A; Musa R
    Eur Phys J E Soft Matter; 2022 Feb; 45(2):11. PubMed ID: 35128581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.