BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2474070)

  • 21. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides.
    Shuba YM; Hesslinger B; Trautwein W; McDonald TF; Pelzer D
    J Physiol; 1990 May; 424():205-28. PubMed ID: 2167969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytoplasmic Ca2+ signals evoked by activation of cholecystokinin receptors: Ca(2+)-dependent current recording in internally perfused pancreatic acinar cells.
    Wakui M; Kase H; Petersen OH
    J Membr Biol; 1991 Nov; 124(2):179-87. PubMed ID: 1662286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells.
    Voronina S; Sukhomlin T; Johnson PR; Erdemli G; Petersen OH; Tepikin A
    J Physiol; 2002 Feb; 539(Pt 1):41-52. PubMed ID: 11850500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction between calcium channel ligands and guanine nucleotides in cultured rat sensory and sympathetic neurones.
    Dolphin AC; Scott RH
    J Physiol; 1989 Jun; 413():271-88. PubMed ID: 2557437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of pancreatic acinar cell to cell coupling during ACh-evoked changes in cytosolic Ca2+.
    Chanson M; Mollard P; Meda P; Suter S; Jongsma HJ
    J Biol Chem; 1999 Jan; 274(1):282-7. PubMed ID: 9867842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological changes in rat pancreatic slices associated with inhibition of enzyme secretion by high concentrations of secretagogues.
    Savion N; Selinger Z
    J Cell Biol; 1978 Feb; 76(2):467-82. PubMed ID: 10605451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different patterns of receptor-activated cytoplasmic Ca2+ oscillations in single pancreatic acinar cells: dependence on receptor type, agonist concentration and intracellular Ca2+ buffering.
    Petersen CC; Toescu EC; Petersen OH
    EMBO J; 1991 Mar; 10(3):527-33. PubMed ID: 1705883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells.
    Maruyama Y; Petersen OH; Flanagan P; Pearson GT
    Nature; 1983 Sep 15-21; 305(5931):228-32. PubMed ID: 6310413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of insulin on acetylcholine-evoked amylase release and calcium mobilization in streptozotocin-induced diabetic rat pancreatic acinar cells.
    Patel R; Pariente JA; Martinez MA; Salido GM; Singh J
    Ann N Y Acad Sci; 2006 Nov; 1084():58-70. PubMed ID: 17151293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pancreatic acinar cells: ionic dependence of the membrane potential and acetycholine-induced depolarization.
    Matthews EK; Petersen OH
    J Physiol; 1973 Jun; 231(2):283-95. PubMed ID: 4352766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of RhoA and its interaction with protein kinase C and Src in CCK-stimulated pancreatic acini.
    Nozu F; Tsunoda Y; Ibitayo AI; Bitar KN; Owyang C
    Am J Physiol; 1999 Apr; 276(4):G915-23. PubMed ID: 10198335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of stimulated amylase secretion by adrenomedullin in rat pancreatic acini.
    Tsuchida T; Ohnishi H; Tanaka Y; Mine T; Fujita T
    Endocrinology; 1999 Feb; 140(2):865-70. PubMed ID: 9927317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pancreatic acinar cells: effect of acetylcholine, pancreozymin, gastrin and secretin on membrane potential and resistance in vivo and in vitro.
    Petersen OH; Ueda N
    J Physiol; 1975 May; 247(2):461-71. PubMed ID: 168355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of pancreatic acinar cell function by intracellular calcium.
    Williams JA
    Am J Physiol; 1980 Apr; 238(4):G269-79. PubMed ID: 6155077
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bombesin-induced cytosolic Ca2+ spiking in pancreatic acinar cells depends on cyclic ADP-ribose and ryanodine receptors.
    Burdakov D; Cancela JM; Petersen OH
    Cell Calcium; 2001 Mar; 29(3):211-6. PubMed ID: 11162858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanism of exocrine pancreatic insufficiency in streptozotocin-induced type 1 diabetes mellitus.
    Patel R; Shervington A; Pariente JA; Martinez-Burgos MA; Salido GM; Adeghate E; Singh J
    Ann N Y Acad Sci; 2006 Nov; 1084():71-88. PubMed ID: 17151294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pancreatic acinar cells: the acetylcholine equilibrium potential and its ionic dependency.
    Iwatsuki N; Petersen OH
    J Physiol; 1977 Aug; 269(3):735-51. PubMed ID: 894613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of ionophore A23187 on cytosolic Ca2+ and enzyme secretion.
    Stark RJ; O'Doherty J
    Am J Physiol; 1982 Sep; 243(3):C196-9. PubMed ID: 6180644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulatory site of functional GTP binding protein coupled to the high affinity cholecystokinin receptor and phospholipase A2 pathway is on the G beta subunit of Gq protein in pancreatic acini.
    Tsunoda Y; Owyang C
    Biochem Biophys Res Commun; 1995 Jun; 211(2):648-55. PubMed ID: 7540841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of action of magnesium on acetylcholine-evoked secretory responses in isolated rat pancreas.
    Francis LP; Lennard R; Singh J
    Exp Physiol; 1990 Sep; 75(5):669-80. PubMed ID: 1700913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.