These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24740817)

  • 41. Simulation of watershed-scale practices for mitigating stream thermal pollution due to urbanization.
    Ketabchy M; Sample DJ; Wynn-Thompson T; Yazdi MN
    Sci Total Environ; 2019 Jun; 671():215-231. PubMed ID: 30928751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.
    Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL
    Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influences of spatial scale and soil permeability on relationships between land cover and baseflow stream nutrient concentrations.
    Daniel FB; Griffith MB; Troyer ME
    Environ Manage; 2010 Feb; 45(2):336-50. PubMed ID: 19956950
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative water quality of lightly- and moderately-impacted streams in the southern Blue Ridge Mountains, USA.
    Price K; Leigh DS
    Environ Monit Assess; 2006 Sep; 120(1-3):269-300. PubMed ID: 16741805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reservoirs regulated by small dams have a similar warming effect than lakes on the summer thermal regime of streams.
    Auffray M; Senécal JF; Turgeon K; St-Hilaire A; Maheu A
    Sci Total Environ; 2023 Apr; 869():161445. PubMed ID: 36634771
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High resolution stream water quality assessment in the Vancouver, British Columbia region: a citizen science study.
    Shupe SM
    Sci Total Environ; 2017 Dec; 603-604():745-759. PubMed ID: 28411868
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nutrient concentrations in Maryland non-tidal streams.
    Morgan RP; Kline KM
    Environ Monit Assess; 2011 Jul; 178(1-4):221-35. PubMed ID: 20890788
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Classifying California's stream thermal regimes for cold-water conservation.
    Willis AD; Peek RA; Rypel AL
    PLoS One; 2021; 16(8):e0256286. PubMed ID: 34415917
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A global assessment of climate-water quality relationships in large rivers: an elasticity perspective.
    Jiang J; Sharma A; Sivakumar B; Wang P
    Sci Total Environ; 2014 Jan; 468-469():877-91. PubMed ID: 24080415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms.
    Isaak DJ; Rieman BE
    Glob Chang Biol; 2013 Mar; 19(3):742-51. PubMed ID: 23504832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of habitat structure on fish assemblages in Amazonian streams of Machado river basin.
    da Costa ID; Rocha V
    Rev Biol Trop; 2017 Mar; 65(1):103-15. PubMed ID: 29466632
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Patterns of macroinvertebrate assemblages in a long-term watershed-scale study to address the effects of pulp and paper mill discharges in four US receiving streams.
    Flinders CA; Minshall GW; Ragsdale RL; Hall TJ
    Integr Environ Assess Manag; 2009 Apr; 5(2):248-58. PubMed ID: 19127981
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of climate downscaling technique and observational data set on modeled ecological responses.
    Pourmokhtarian A; Driscoll CT; Campbell JL; Hayhoe K; Stoner AM
    Ecol Appl; 2016 Jul; 26(5):1321-1337. PubMed ID: 27755746
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimating reference nutrient criteria for Maryland ecoregions.
    Morgan RP; Kline KM; Churchill JB
    Environ Monit Assess; 2013 Mar; 185(3):2123-37. PubMed ID: 22644126
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fish assemblage responses to water withdrawals and water supply reservoirs in Piedmont streams.
    Freeman MC; Marcinek PA
    Environ Manage; 2006 Sep; 38(3):435-50. PubMed ID: 16688514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The impact of climate change induced alterations of streamflow and stream temperature on the distribution of riparian species.
    Rogers JB; Stein ED; Beck MW; Ambrose RF
    PLoS One; 2020; 15(11):e0242682. PubMed ID: 33232354
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams.
    Dick JJ; Soulsby C; Birkel C; Malcolm I; Tetzlaff D
    PLoS One; 2016; 11(8):e0161363. PubMed ID: 27556278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages.
    Mustonen KR; Mykrä H; Marttila H; Sarremejane R; Veijalainen N; Sippel K; Muotka T; Hawkins CP
    Glob Chang Biol; 2018 Jun; 24(6):2434-2446. PubMed ID: 29341358
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.
    Lorion CM; Kennedy BP
    Ecol Appl; 2009 Mar; 19(2):468-79. PubMed ID: 19323203
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shade, light, and stream temperature responses to riparian thinning in second-growth redwood forests of northern California.
    Roon DA; Dunham JB; Groom JD
    PLoS One; 2021; 16(2):e0246822. PubMed ID: 33592001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.