These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 24740840)
1. Physical stability comparisons of IgG1-Fc variants: effects of N-glycosylation site occupancy and Asp/Gln residues at site Asn 297. Alsenaidy MA; Okbazghi SZ; Kim JH; Joshi SB; Middaugh CR; Tolbert TJ; Volkin DB J Pharm Sci; 2014 Jun; 103(6):1613-1627. PubMed ID: 24740840 [TBL] [Abstract][Full Text] [Related]
2. Correlating the Impact of Well-Defined Oligosaccharide Structures on Physical Stability Profiles of IgG1-Fc Glycoforms. More AS; Toprani VM; Okbazghi SZ; Kim JH; Joshi SB; Middaugh CR; Tolbert TJ; Volkin DB J Pharm Sci; 2016 Feb; 105(2):588-601. PubMed ID: 26869421 [TBL] [Abstract][Full Text] [Related]
3. Production, Characterization, and Biological Evaluation of Well-Defined IgG1 Fc Glycoforms as a Model System for Biosimilarity Analysis. Okbazghi SZ; More AS; White DR; Duan S; Shah IS; Joshi SB; Middaugh CR; Volkin DB; Tolbert TJ J Pharm Sci; 2016 Feb; 105(2):559-574. PubMed ID: 26869419 [TBL] [Abstract][Full Text] [Related]
4. Impact of Glycosylation on the Local Backbone Flexibility of Well-Defined IgG1-Fc Glycoforms Using Hydrogen Exchange-Mass Spectrometry. More AS; Toth RT; Okbazghi SZ; Middaugh CR; Joshi SB; Tolbert TJ; Volkin DB; Weis DD J Pharm Sci; 2018 Sep; 107(9):2315-2324. PubMed ID: 29751008 [TBL] [Abstract][Full Text] [Related]
5. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. Krapp S; Mimura Y; Jefferis R; Huber R; Sondermann P J Mol Biol; 2003 Jan; 325(5):979-89. PubMed ID: 12527303 [TBL] [Abstract][Full Text] [Related]
6. High-throughput biophysical analysis and data visualization of conformational stability of an IgG1 monoclonal antibody after deglycosylation. Alsenaidy MA; Kim JH; Majumdar R; Weis DD; Joshi SB; Tolbert TJ; Middaugh CR; Volkin DB J Pharm Sci; 2013 Nov; 102(11):3942-56. PubMed ID: 24114789 [TBL] [Abstract][Full Text] [Related]
7. Effect of pH, temperature, and salt on the stability of Escherichia coli- and Chinese hamster ovary cell-derived IgG1 Fc. Li CH; Narhi LO; Wen J; Dimitrova M; Wen ZQ; Li J; Pollastrini J; Nguyen X; Tsuruda T; Jiang Y Biochemistry; 2012 Dec; 51(50):10056-65. PubMed ID: 23078371 [TBL] [Abstract][Full Text] [Related]
8. Engineering the fragment crystallizable (Fc) region of human IgG1 multimers and monomers to fine-tune interactions with sialic acid-dependent receptors. Blundell PA; Le NPL; Allen J; Watanabe Y; Pleass RJ J Biol Chem; 2017 Aug; 292(31):12994-13007. PubMed ID: 28620050 [TBL] [Abstract][Full Text] [Related]
9. Comparative Evaluation of the Chemical Stability of 4 Well-Defined Immunoglobulin G1-Fc Glycoforms. Mozziconacci O; Okbazghi S; More AS; Volkin DB; Tolbert T; Schöneich C J Pharm Sci; 2016 Feb; 105(2):575-587. PubMed ID: 26869420 [TBL] [Abstract][Full Text] [Related]
10. Site-specific glycosylation of an aglycosylated human IgG1-Fc antibody protein generates neoglycoproteins with enhanced function. Watt GM; Lund J; Levens M; Kolli VS; Jefferis R; Boons GJ Chem Biol; 2003 Sep; 10(9):807-14. PubMed ID: 14522051 [TBL] [Abstract][Full Text] [Related]
11. The Structural Role of Antibody N-Glycosylation in Receptor Interactions. Subedi GP; Barb AW Structure; 2015 Sep; 23(9):1573-1583. PubMed ID: 26211613 [TBL] [Abstract][Full Text] [Related]
12. Effects of Glycan Structure on the Stability and Receptor Binding of an IgG4-Fc. Kang H; Larson NR; White DR; Middaugh CR; Tolbert T; Schöneich C J Pharm Sci; 2020 Jan; 109(1):677-689. PubMed ID: 31669606 [TBL] [Abstract][Full Text] [Related]
13. Contrasting glycosylation profiles between Fab and Fc of a human IgG protein studied by electrospray ionization mass spectrometry. Mimura Y; Ashton PR; Takahashi N; Harvey DJ; Jefferis R J Immunol Methods; 2007 Sep; 326(1-2):116-26. PubMed ID: 17714731 [TBL] [Abstract][Full Text] [Related]
14. Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Yamaguchi Y; Nishimura M; Nagano M; Yagi H; Sasakawa H; Uchida K; Shitara K; Kato K Biochim Biophys Acta; 2006 Apr; 1760(4):693-700. PubMed ID: 16343775 [TBL] [Abstract][Full Text] [Related]
15. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. Wada R; Matsui M; Kawasaki N MAbs; 2019; 11(2):350-372. PubMed ID: 30466347 [TBL] [Abstract][Full Text] [Related]
16. A protein structural change in aglycosylated IgG3 correlates with loss of huFc gamma R1 and huFc gamma R111 binding and/or activation. Lund J; Tanaka T; Takahashi N; Sarmay G; Arata Y; Jefferis R Mol Immunol; 1990 Nov; 27(11):1145-53. PubMed ID: 2174119 [TBL] [Abstract][Full Text] [Related]
17. Glycosylation of human IgG-Fc: influences on structure revealed by differential scanning micro-calorimetry. Ghirlando R; Lund J; Goodall M; Jefferis R Immunol Lett; 1999 May; 68(1):47-52. PubMed ID: 10397155 [TBL] [Abstract][Full Text] [Related]
18. Characterization of asparagine 330 deamidation in an Fc-fragment of IgG1 using cation exchange chromatography and peptide mapping. Zhang YT; Hu J; Pace AL; Wong R; Wang YJ; Kao YH J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Aug; 965():65-71. PubMed ID: 24999246 [TBL] [Abstract][Full Text] [Related]
19. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-Part 2: Mass spectrometric methods. Reusch D; Haberger M; Falck D; Peter B; Maier B; Gassner J; Hook M; Wagner K; Bonnington L; Bulau P; Wuhrer M MAbs; 2015; 7(4):732-42. PubMed ID: 25996192 [TBL] [Abstract][Full Text] [Related]