These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24741046)

  • 1. Vocal generalization depends on gesture identity and sequence.
    Hoffmann LA; Sober SJ
    J Neurosci; 2014 Apr; 34(16):5564-74. PubMed ID: 24741046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dopamine Depletion Affects Vocal Acoustics and Disrupts Sensorimotor Adaptation in Songbirds.
    Saravanan V; Hoffmann LA; Jacob AL; Berman GJ; Sober SJ
    eNeuro; 2019; 6(3):. PubMed ID: 31126913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Pitch Shifts on Delay-Induced Changes in Vocal Sequencing in a Songbird.
    Wyatt M; Berthiaume EA; Kelly CW; Sober SJ
    eNeuro; 2017; 4(1):. PubMed ID: 28144622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Songbirds can learn flexible contextual control over syllable sequencing.
    Veit L; Tian LY; Monroy Hernandez CJ; Brainard MS
    Elife; 2021 Jun; 10():. PubMed ID: 34060473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird.
    Tian LY; Brainard MS
    Neuron; 2017 Dec; 96(5):1168-1177.e5. PubMed ID: 29154128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual pre-motor contribution to songbird syllable variation.
    Thompson JA; Basista MJ; Wu W; Bertram R; Johnson F
    J Neurosci; 2011 Jan; 31(1):322-30. PubMed ID: 21209218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback.
    Behroozmand R; Sangtian S; Korzyukov O; Larson CR
    Brain Res; 2016 Apr; 1636():1-12. PubMed ID: 26835556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adult birdsong is actively maintained by error correction.
    Sober SJ; Brainard MS
    Nat Neurosci; 2009 Jul; 12(7):927-31. PubMed ID: 19525945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bayesian Account of Vocal Adaptation to Pitch-Shifted Auditory Feedback.
    Hahnloser RH; Narula G
    PLoS One; 2017; 12(1):e0169795. PubMed ID: 28135267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Song motor control organizes acoustic patterns on two levels in Bengalese finches (Lonchura striata var. domestica).
    Seki Y; Suzuki K; Takahasi M; Okanoya K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jun; 194(6):533-43. PubMed ID: 18386017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal learning is constrained by the statistics of sensorimotor experience.
    Sober SJ; Brainard MS
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):21099-103. PubMed ID: 23213223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Social context rapidly modulates the influence of auditory feedback on avian vocal motor control.
    Sakata JT; Brainard MS
    J Neurophysiol; 2009 Oct; 102(4):2485-97. PubMed ID: 19692513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shared mechanisms of auditory and non-auditory vocal learning in the songbird brain.
    McGregor JN; Grassler AL; Jaffe PI; Jacob AL; Brainard MS; Sober SJ
    Elife; 2022 Sep; 11():. PubMed ID: 36107757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical learning for vocal sequence acquisition in a songbird.
    James LS; Sun H; Wada K; Sakata JT
    Sci Rep; 2020 Feb; 10(1):2248. PubMed ID: 32041978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural bases of sensorimotor adaptation in the vocal motor system.
    Behroozmand R; Sangtian S
    Exp Brain Res; 2018 Jul; 236(7):1881-1895. PubMed ID: 29696312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulations of inhibition in cortical circuitry differentially affect spectral and temporal features of Bengalese finch song.
    Isola GR; Vochin A; Sakata JT
    J Neurophysiol; 2020 Feb; 123(2):815-830. PubMed ID: 31967928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles.
    Srivastava KH; Elemans CP; Sober SJ
    J Neurosci; 2015 Oct; 35(42):14183-94. PubMed ID: 26490859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syringeal specialization of frequency control during song production in the Bengalese finch (Lonchura striata domestica).
    Secora KR; Peterson JR; Urbano CM; Chung B; Okanoya K; Cooper BG
    PLoS One; 2012; 7(3):e34135. PubMed ID: 22479543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopaminergic Contributions to Vocal Learning.
    Hoffmann LA; Saravanan V; Wood AN; He L; Sober SJ
    J Neurosci; 2016 Feb; 36(7):2176-89. PubMed ID: 26888928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Basal Ganglia Circuit Sufficient to Guide Birdsong Learning.
    Xiao L; Chattree G; Oscos FG; Cao M; Wanat MJ; Roberts TF
    Neuron; 2018 Apr; 98(1):208-221.e5. PubMed ID: 29551492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.