These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24742820)

  • 21. Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure.
    Garcia Sampaio F; de Lima Boijink C; Tie Oba E; Romagueira Bichara dos Santos L; Lúcia Kalinin A; Tadeu Rantin F
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jan; 147(1):43-51. PubMed ID: 17728190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus).
    Carvalho Cdos S; Bernusso VA; Fernandes MN
    Aquat Toxicol; 2015 Oct; 167():220-7. PubMed ID: 26361357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of sediment-associated CuO nanoparticles on Cu bioaccumulation and oxidative stress responses in freshwater snail Bellamya aeruginosa.
    Ma T; Gong S; Tian B
    Sci Total Environ; 2017 Feb; 580():797-804. PubMed ID: 27939938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions.
    Shaw BJ; Handy RD
    Environ Int; 2011 Aug; 37(6):1083-97. PubMed ID: 21474182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain.
    Ramsden CS; Smith TJ; Shaw BJ; Handy RD
    Ecotoxicology; 2009 Oct; 18(7):939-51. PubMed ID: 19590957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revisiting the mechanisms of copper toxicity to rainbow trout: Time course, influence of calcium, unidirectional Na(+) fluxes, and branchial Na(+), K(+) ATPase and V-type H(+) ATPase activities.
    Chowdhury MJ; Girgis M; Wood CM
    Aquat Toxicol; 2016 Aug; 177():51-62. PubMed ID: 27262060
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analyzing the effectiveness of using branchial NKA activity as a biomarker for assessing waterborne copper toxicity in tilapia (Oreochromis mossambicus): A damage-based modeling approach.
    Wu SM; Tsai JW; Tzeng WN; Chen WY; Shih WY
    Aquat Toxicol; 2015 Jun; 163():51-9. PubMed ID: 25854698
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.
    Regier N; Cosio C; von Moos N; Slaveykova VI
    Chemosphere; 2015 Jun; 128():56-61. PubMed ID: 25655819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dietary copper exposure in the African walking catfish, Clarias gariepinus: transient osmoregulatory disturbances and oxidative stress.
    Hoyle I; Shaw BJ; Handy RD
    Aquat Toxicol; 2007 Jun; 83(1):62-72. PubMed ID: 17442412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor.
    Käkinen A; Bondarenko O; Ivask A; Kahru A
    Sensors (Basel); 2011; 11(11):10502-21. PubMed ID: 22346655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper uptake kinetics and toxicological effects of ionic Cu and CuO nanoparticles on the seaweed Ulva rigida.
    Malea P; Emmanouilidis A; Kevrekidis DP; Moustakas M
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57523-57542. PubMed ID: 35352227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper-induced tight junction mRNA expression changes, apoptosis and antioxidant responses via NF-κB, TOR and Nrf2 signaling molecules in the gills of fish: preventive role of arginine.
    Wang B; Feng L; Jiang WD; Wu P; Kuang SY; Jiang J; Tang L; Tang WN; Zhang YA; Liu Y; Zhou XQ
    Aquat Toxicol; 2015 Jan; 158():125-37. PubMed ID: 25461751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of the effects of copper nanoparticles and copper sulfate on Phaeodactylum tricornutum physiology and transcription.
    Zhu Y; Xu J; Lu T; Zhang M; Ke M; Fu Z; Pan X; Qian H
    Environ Toxicol Pharmacol; 2017 Dec; 56():43-49. PubMed ID: 28881226
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon.
    Ostaszewska T; Chojnacki M; Kamaszewski M; Sawosz-Chwalibóg E
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1621-33. PubMed ID: 26381783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The combined effect of copper and low pH on antioxidant defenses and biochemical parameters in neotropical fish pacu, Piaractus mesopotamicus (Holmberg, 1887).
    Sampaio FG; de Lima Boijink C; Dos Santos LR; Oba ET; Kalinin AL; Rantin FT
    Ecotoxicology; 2010 Jun; 19(5):963-76. PubMed ID: 20213433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus.
    Xia J; Zhao HZ; Lu GH
    Biomed Environ Sci; 2013 Sep; 26(9):742-9. PubMed ID: 24099608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exposure to copper nanoparticles or copper sulfate dysregulated the hypothalamic-pituitary-gonadal axis, gonadal histology, and metabolites in Pelteobagrus fulvidraco.
    Zhao C; Chu P; Tang X; Yan J; Han X; Ji J; Ning X; Zhang K; Yin S; Wang T
    J Hazard Mater; 2023 Sep; 457():131719. PubMed ID: 37257385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Resveratrol Alleviates the Hepatic Toxicity of CuSO
    Tian Y; Wu B; Li X; Jin X; Zhang F; Jiang C; Xu W; Li H; Wang H
    Biol Trace Elem Res; 2019 Feb; 187(2):464-471. PubMed ID: 29980948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells.
    Katsumiti A; Thorley AJ; Arostegui I; Reip P; Valsami-Jones E; Tetley TD; Cajaraville MP
    Toxicol In Vitro; 2018 Apr; 48():146-158. PubMed ID: 29408664
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proteomic response of mussels Mytilus galloprovincialis exposed to CuO NPs and Cu²⁺: an exploratory biomarker discovery.
    Gomes T; Chora S; Pereira CG; Cardoso C; Bebianno MJ
    Aquat Toxicol; 2014 Oct; 155():327-36. PubMed ID: 25089921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.