BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2474290)

  • 1. In vitro selective glycogen depletion of frog twitch and slow muscle fibres.
    Kiessling A; Pomrehn A
    Biomed Biochim Acta; 1989; 48(5-6):S455-8. PubMed ID: 2474290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective long-term electrical stimulation of fast glycolytic fibres increases capillary supply but not oxidative enzyme activity in rat skeletal muscles.
    Egginton S; Hudlická O
    Exp Physiol; 2000 Sep; 85(5):567-73. PubMed ID: 11038408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of the extraocular muscles of the frog. III. Morphological, mechanical and pharmacological properties of the isolated retractor bulbi muscle.
    Asmussen G
    Acta Biol Med Ger; 1978; 37(2):323-33. PubMed ID: 309255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycogen depletion patterns in horses performing maximal exercise.
    Hodgson DR; Rose RJ; Allen JR; Dimauro J
    Res Vet Sci; 1984 Mar; 36(2):169-73. PubMed ID: 6718816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective stimulation of motor fibres in the sciatic nerve of a rat.
    Rozman J; Petrusa MM; Ribaric S
    Pflugers Arch; 2001; 442(6 Suppl 1):R150-2. PubMed ID: 11678318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Interpretation of the cross sectional structure of skeletal muscle fibers. 2. Light and electron microscopic studies of m. rectus abdominis in Rana esculenta].
    Dauber W
    Z Mikrosk Anat Forsch; 1975; 89(6):1030-42. PubMed ID: 137606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative degree of stimulation-evoked glycogen degradation in muscle fibres of different type in rat gastrocnemius.
    Kernell D; Lind A; van Diemen AB; De Haan A
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):139-53. PubMed ID: 7541460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective glycogen depletion in skeletal muscle fibres of man following sustained contractions.
    Gollnick PD; Karlsson J; Piehl K; Saltin B
    J Physiol; 1974 Aug; 241(1):59-67. PubMed ID: 4278538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycogen depletion in intrafusal fibres in rats during short-duration high-intensity treadmill running.
    Yoshimura A; Toyoda Y; Murakami T; Yoshizato H; Ando Y; Fujitsuka N
    Acta Physiol Scand; 2005 Sep; 185(1):41-50. PubMed ID: 16128696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of skeletal muscles to training.
    Secher NH; Mizuno M; Saltin B
    Bull Eur Physiopathol Respir; 1984; 20(5):453-7. PubMed ID: 6239669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic stimulation of mammalian muscle: enzyme and metabolic changes in individual fibres.
    Henriksson J; Salmons S; Lowry OH
    Biomed Biochim Acta; 1989; 48(5-6):S445-54. PubMed ID: 2527028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ischaemia-induced injury in glycogen-depleted skeletal muscle. Selective vulnerability of FG-fibres.
    Jennische E
    Acta Physiol Scand; 1985 Dec; 125(4):727-34. PubMed ID: 4091012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraspinal microstimulation preferentially recruits fatigue-resistant muscle fibres and generates gradual force in rat.
    Bamford JA; Putman CT; Mushahwar VK
    J Physiol; 2005 Dec; 569(Pt 3):873-84. PubMed ID: 16239281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis.
    Fridén J; Seger J; Ekblom B
    Acta Physiol Scand; 1989 Mar; 135(3):381-91. PubMed ID: 2467521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle glycogen depletion patterns in fast twitch fibre subgroups of man during submaximal and supramaximal exercise.
    Thomson JA; Green HJ; Houston ME
    Pflugers Arch; 1979 Feb; 379(1):105-8. PubMed ID: 571096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of frog twitch and slow muscle fibers after mincing.
    Schmidt H; Emser W
    Muscle Nerve; 1985 Oct; 8(8):633-43. PubMed ID: 3877237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres.
    Lipska E; Novotova M; Radzyukevich T; Zahradnik I
    Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Morphological and physiological characterization of fiber types in the iliofibular muscle of Rana esculenta].
    Dauber W
    Z Mikrosk Anat Forsch; 1977; 91(3):493-508. PubMed ID: 308746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular patterns of post-mortem glycogenolysis in longissimus dorsi muscles of pigs at different live weights.
    Swatland HJ
    Histochem J; 1976 Sep; 8(5):455-61. PubMed ID: 61191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.