BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

932 related articles for article (PubMed ID: 24742981)

  • 1. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.
    Poggi-Varaldo HM; Munoz-Paez KM; Escamilla-Alvarado C; Robledo-Narváez PN; Ponce-Noyola MT; Calva-Calva G; Ríos-Leal E; Galíndez-Mayer J; Estrada-Vázquez C; Ortega-Clemente A; Rinderknecht-Seijas NF
    Waste Manag Res; 2014 May; 32(5):353-65. PubMed ID: 24742981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenergy and bioproducts from municipal organic waste as alternative to landfilling: a comparative life cycle assessment with prospective application to Mexico.
    Escamilla-Alvarado C; Poggi-Varaldo HM; Ponce-Noyola MT
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25602-25617. PubMed ID: 27259953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.
    Arizzi M; Morra S; Pugliese M; Gullino ML; Gilardi G; Valetti F
    Waste Manag; 2016 Oct; 56():151-7. PubMed ID: 27422046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation.
    Chandrasekhar K; Amulya K; Mohan SV
    Waste Manag; 2015 Nov; 45():57-65. PubMed ID: 26117418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.
    Robledo-Narváez PN; Muñoz-Páez KM; Poggi-Varaldo HM; Ríos-Leal E; Calva-Calva G; Ortega-Clemente LA; Rinderknecht-Seijas N; Estrada-Vázquez C; Ponce-Noyola MT; Salazar-Montoya JA
    J Environ Manage; 2013 Oct; 128():126-37. PubMed ID: 23732191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy.
    Sharma S; Basu S; Shetti NP; Aminabhavi TM
    Sci Total Environ; 2020 Apr; 713():136633. PubMed ID: 32019020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.
    Logan BE; Rabaey K
    Science; 2012 Aug; 337(6095):686-90. PubMed ID: 22879507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.
    Choi J; Ahn Y
    Bioresour Technol; 2015 May; 183():53-60. PubMed ID: 25723127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohydrogen production using kitchen waste as the potential substrate: A sustainable approach.
    Srivastava N; Srivastava M; Abd Allah EF; Singh R; Hashem A; Gupta VK
    Chemosphere; 2021 May; 271():129537. PubMed ID: 33450424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food waste and food processing waste for biohydrogen production: a review.
    Yasin NH; Mumtaz T; Hassan MA; Abd Rahman N
    J Environ Manage; 2013 Nov; 130():375-85. PubMed ID: 24121591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation--Economic and energy assessment.
    Bonk F; Bastidas-Oyanedel JR; Schmidt JE
    Waste Manag; 2015 Jun; 40():82-91. PubMed ID: 25840736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.
    Alibardi L; Cossu R
    Waste Manag; 2016 Jan; 47(Pt A):69-77. PubMed ID: 26254676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biohydrogen from waste feedstocks: An energy opportunity for decarbonization in developing countries.
    Machhirake NP; Vanapalli KR; Kumar S; Mohanty B
    Environ Res; 2024 Jul; 252(Pt 4):119028. PubMed ID: 38685297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of operational parameters on dark fermentative hydrogen production from biodegradable complex waste biomass.
    Ghimire A; Sposito F; Frunzo L; Trably E; Escudié R; Pirozzi F; Lens PN; Esposito G
    Waste Manag; 2016 Apr; 50():55-64. PubMed ID: 26876775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept.
    Luo G; Talebnia F; Karakashev D; Xie L; Zhou Q; Angelidaki I
    Bioresour Technol; 2011 Jan; 102(2):1433-9. PubMed ID: 20933399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of sustainable approaches for converting the organic waste to bioenergy.
    Dhanya BS; Mishra A; Chandel AK; Verma ML
    Sci Total Environ; 2020 Jun; 723():138109. PubMed ID: 32229385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of novel strategies for higher fermentative biohydrogen recovery along with novel metabolites from organic wastes: The present state of the art.
    Rao R; Basak N
    Biotechnol Appl Biochem; 2021 Jun; 68(3):421-444. PubMed ID: 32474946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran.
    Schievano A; Sciarria TP; Gao YC; Scaglia B; Salati S; Zanardo M; Quiao W; Dong R; Adani F
    Waste Manag; 2016 Oct; 56():519-29. PubMed ID: 27406307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review.
    Hung CH; Chang YT; Chang YJ
    Bioresour Technol; 2011 Sep; 102(18):8437-44. PubMed ID: 21429742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.