BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

920 related articles for article (PubMed ID: 24742981)

  • 21. Dark fermentative hydrogen production: Potential of food waste as future energy needs.
    Mohanakrishna G; Sneha NP; Rafi SM; Sarkar O
    Sci Total Environ; 2023 Aug; 888():163801. PubMed ID: 37127164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity.
    Mohan SV; Chandrasekhar K
    Bioresour Technol; 2011 Jul; 102(14):7077-85. PubMed ID: 21570830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-stage photofermentative biohydrogen production from sugar beet molasses by different purple non-sulfur bacteria.
    Sagir E; Ozgur E; Gunduz U; Eroglu I; Yucel M
    Bioprocess Biosyst Eng; 2017 Nov; 40(11):1589-1601. PubMed ID: 28730325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular biohydrogen production by dark and photo fermentation from wastes containing starch: recent advancement and future perspective.
    Das SR; Basak N
    Bioprocess Biosyst Eng; 2021 Jan; 44(1):1-25. PubMed ID: 32785789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Bioenergy production from waste: examples of biomethane and biohydrogen].
    Aceves-Lara CA; Trably E; Bastidas-Oyenadel JR; Ramirez I; Latrille E; Steyer JP
    J Soc Biol; 2008; 202(3):177-89. PubMed ID: 18980740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen production: two stage processes for waste degradation.
    Gómez X; Fernández C; Fierro J; Sánchez ME; Escapa A; Morán A
    Bioresour Technol; 2011 Sep; 102(18):8621-7. PubMed ID: 21482462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.
    Saratale GD; Kshirsagar SD; Sampange VT; Saratale RG; Oh SE; Govindwar SP; Oh MK
    Appl Biochem Biotechnol; 2014 Dec; 174(8):2801-17. PubMed ID: 25374139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Municipal waste liquor treatment via bioelectrochemical and fermentation (H
    Rózsenberszki T; Koók L; Bakonyi P; Nemestóthy N; Logroño W; Pérez M; Urquizo G; Recalde C; Kurdi R; Sarkady A
    Chemosphere; 2017 Mar; 171():692-701. PubMed ID: 28061427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioelectricity from kitchen and bamboo waste in a microbial fuel cell.
    Moqsud MA; Omine K; Yasufuku N; Bushra QS; Hyodo M; Nakata Y
    Waste Manag Res; 2014 Feb; 32(2):124-30. PubMed ID: 24519226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
    Kaparaju P; Serrano M; Thomsen AB; Kongjan P; Angelidaki I
    Bioresour Technol; 2009 May; 100(9):2562-8. PubMed ID: 19135361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process.
    Giordano A; Cantù C; Spagni A
    Bioresour Technol; 2011 Mar; 102(6):4474-9. PubMed ID: 21262569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioconversion of organic wastes into value-added products: A review.
    Chavan S; Yadav B; Atmakuri A; Tyagi RD; Wong JWC; Drogui P
    Bioresour Technol; 2022 Jan; 344(Pt B):126398. PubMed ID: 34822979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biorefinery concept comprising acid hydrolysis, dark fermentation, and anaerobic digestion for co-processing of fruit and vegetable wastes and corn stover.
    Rodríguez-Valderrama S; Escamilla-Alvarado C; Rivas-García P; Magnin JP; Alcalá-Rodríguez M; García-Reyes RB
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28585-28596. PubMed ID: 32266619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of bioenergy recovery processes treating organic residues from ethanol fermentation process.
    Juang CP; Whang LM; Cheng HH
    Bioresour Technol; 2011 May; 102(9):5394-9. PubMed ID: 21055919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Value addition through biohydrogen production and integrated processes from hydrothermal pretreatment of lignocellulosic biomass.
    Mohanakrishna G; Modestra JA
    Bioresour Technol; 2023 Feb; 369():128386. PubMed ID: 36423757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renewable biohydrogen production from lignocellulosic biomass using fermentation and integration of systems with other energy generation technologies.
    Bhatia SK; Jagtap SS; Bedekar AA; Bhatia RK; Rajendran K; Pugazhendhi A; Rao CV; Atabani AE; Kumar G; Yang YH
    Sci Total Environ; 2021 Apr; 765():144429. PubMed ID: 33385808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda.
    Brentner LB; Peccia J; Zimmerman JB
    Environ Sci Technol; 2010 Apr; 44(7):2243-54. PubMed ID: 20222726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comprehensive review on two-stage integrative schemes for the valorization of dark fermentative effluents.
    Sivagurunathan P; Kuppam C; Mudhoo A; Saratale GD; Kadier A; Zhen G; Chatellard L; Trably E; Kumar G
    Crit Rev Biotechnol; 2018 Sep; 38(6):868-882. PubMed ID: 29264932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. States and challenges for high-value biohythane production from waste biomass by dark fermentation technology.
    Liu Z; Zhang C; Lu Y; Wu X; Wang L; Wang L; Han B; Xing XH
    Bioresour Technol; 2013 May; 135():292-303. PubMed ID: 23186673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated biorefinery routes of biohydrogen: Possible utilization of acidogenic fermentative effluent.
    Rajesh Banu J; Ginni G; Kavitha S; Yukesh Kannah R; Adish Kumar S; Bhatia SK; Kumar G
    Bioresour Technol; 2021 Jan; 319():124241. PubMed ID: 33254464
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 46.