These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

932 related articles for article (PubMed ID: 24742981)

  • 41. Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects.
    Saravanan A; Senthil Kumar P; Khoo KS; Show PL; Femina Carolin C; Fetcia Jackulin C; Jeevanantham S; Karishma S; Show KY; Lee DJ; Chang JS
    Bioresour Technol; 2021 Dec; 342():126021. PubMed ID: 34600315
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trends in renewable energy production employing biomass-based biochar.
    Kant Bhatia S; Palai AK; Kumar A; Kant Bhatia R; Kumar Patel A; Kumar Thakur V; Yang YH
    Bioresour Technol; 2021 Nov; 340():125644. PubMed ID: 34332449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Food Waste: A Promising Source of Sustainable Biohydrogen Fuel.
    Habashy MM; Ong ES; Abdeldayem OM; Al-Sakkari EG; Rene ER
    Trends Biotechnol; 2021 Dec; 39(12):1274-1288. PubMed ID: 33992456
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Palm oil industrial wastes as a promising feedstock for biohydrogen production: A comprehensive review.
    Ong ES; Rabbani AH; Habashy MM; Abdeldayem OM; Al-Sakkari EG; Rene ER
    Environ Pollut; 2021 Dec; 291():118160. PubMed ID: 34562690
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biohydrogen production from anaerobic fermentation.
    Wang AJ; Cao GL; Liu WZ
    Adv Biochem Eng Biotechnol; 2012; 128():143-63. PubMed ID: 22089826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Land-use and alternative bioenergy pathways for waste biomass.
    Campbell JE; Block E
    Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Waste valorization by biotechnological conversion into added value products.
    Liguori R; Amore A; Faraco V
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6129-47. PubMed ID: 23749120
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improvement in biohythane production using organic solid waste and distillery effluent.
    Mishra P; Balachandar G; Das D
    Waste Manag; 2017 Aug; 66():70-78. PubMed ID: 28456457
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach.
    Saadatinavaz F; Karimi K; Denayer JFM
    Bioresour Technol; 2021 Dec; 341():125834. PubMed ID: 34479139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From waste to fuel: Energy recovery from household food waste via its bioconversion to energy carriers based on microbiological processes.
    Antonopoulou G; Alexandropoulou M; Ntaikou I; Lyberatos G
    Sci Total Environ; 2020 Aug; 732():139230. PubMed ID: 32438165
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dark fermentation and microalgae cultivation coupled systems: Outlook and challenges.
    Lacroux J; Llamas M; Dauptain K; Avila R; Steyer JP; van Lis R; Trably E
    Sci Total Environ; 2023 Mar; 865():161136. PubMed ID: 36587699
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermophilic biohydrogen production strategy using agro industrial wastes: Current update, challenges, and sustainable solutions.
    Haque S; Singh R; Pal DB; Faidah H; Ashgar SS; Areeshi MY; Almalki AH; Verma B; Srivastava N; Gupta VK
    Chemosphere; 2022 Nov; 307(Pt 4):136120. PubMed ID: 35995181
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges.
    Chandran EM; Mohan E
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102129-102157. PubMed ID: 37684507
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surpassing the current limitations of biohydrogen production systems: The case for a novel hybrid approach.
    Boboescu IZ; Gherman VD; Lakatos G; Pap B; Bíró T; Maróti G
    Bioresour Technol; 2016 Mar; 204():192-201. PubMed ID: 26790867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process.
    Abreu AA; Tavares F; Alves MM; Cavaleiro AJ; Pereira MA
    Bioresour Technol; 2019 Apr; 278():180-186. PubMed ID: 30703635
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development and calibration of a model for biohydrogen production from organic waste.
    Boni MR; Sbaffoni S; Tuccinardi L; Viotti P
    Waste Manag; 2013 May; 33(5):1128-35. PubMed ID: 23465312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Production of bioenergy and biochemicals from industrial and agricultural wastewater.
    Angenent LT; Karim K; Al-Dahhan MH; Wrenn BA; Domíguez-Espinosa R
    Trends Biotechnol; 2004 Sep; 22(9):477-85. PubMed ID: 15331229
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion.
    Arslan C; Sattar A; Changying J; Nasir A; Mari IA; Bakht MZ
    Biomed Res Int; 2015; 2015():590753. PubMed ID: 26819952
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances and bottlenecks in microbial hydrogen production.
    Stephen AJ; Archer SA; Orozco RL; Macaskie LE
    Microb Biotechnol; 2017 Sep; 10(5):1120-1127. PubMed ID: 28834420
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biohydrogen production by lactate-driven dark fermentation of real organic wastes derived from solid waste treatment plants.
    Martínez-Fraile C; Muñoz R; Teresa Simorte M; Sanz I; García-Depraect O
    Bioresour Technol; 2024 Jul; 403():130846. PubMed ID: 38754561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 47.