These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 24743108)
1. Increased resistance during jump exercise does not enhance cortical bone formation. Boudreaux RD; Swift JM; Gasier HG; Wiggs MP; Hogan HA; Fluckey JD; Bloomfield SA Med Sci Sports Exerc; 2014; 46(5):982-9. PubMed ID: 24743108 [TBL] [Abstract][Full Text] [Related]
2. Increased training loads do not magnify cancellous bone gains with rodent jump resistance exercise. Swift JM; Gasier HG; Swift SN; Wiggs MP; Hogan HA; Fluckey JD; Bloomfield SA J Appl Physiol (1985); 2010 Dec; 109(6):1600-7. PubMed ID: 20930128 [TBL] [Abstract][Full Text] [Related]
3. Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse. Macias BR; Swift JM; Nilsson MI; Hogan HA; Bouse SD; Bloomfield SA J Appl Physiol (1985); 2012 Mar; 112(5):918-25. PubMed ID: 22174402 [TBL] [Abstract][Full Text] [Related]
4. Resistance Training Threshold for Elevating Bone Mineral Density in Growing Female Rats. Dror AD; Virk K; Lee K; Gerston A; Prakash A; Abbott MJ; Jaque SV; Sumida KD Int J Sports Med; 2018 May; 39(5):382-389. PubMed ID: 29475208 [TBL] [Abstract][Full Text] [Related]
5. Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats. Notomi T; Okimoto N; Okazaki Y; Tanaka Y; Nakamura T; Suzuki M J Bone Miner Res; 2001 Jan; 16(1):166-74. PubMed ID: 11149481 [TBL] [Abstract][Full Text] [Related]
6. Hindlimb unloading has a greater effect on cortical compared with cancellous bone in mature female rats. Allen MR; Bloomfield SA J Appl Physiol (1985); 2003 Feb; 94(2):642-50. PubMed ID: 12391029 [TBL] [Abstract][Full Text] [Related]
7. Effect of intermittent administration of hPTH(1-34) on cortical bone geometry in rats treated with high-dose glucocorticoids. Iwamoto J; Seki A; Sato Y Chin J Physiol; 2014 Oct; 57(5):231-7. PubMed ID: 25241982 [TBL] [Abstract][Full Text] [Related]
8. Age does not influence the bone response to treadmill exercise in female rats. Bennell KL; Khan KM; Warmington S; Forwood MR; Coleman BD; Bennett MB; Wark JD Med Sci Sports Exerc; 2002 Dec; 34(12):1958-65. PubMed ID: 12471302 [TBL] [Abstract][Full Text] [Related]
9. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats. Lin HS; Wang HS; Chiu HT; Cheng KB; Hsu AT; Huang TH J Sports Sci Med; 2018 Jun; 17(2):188-196. PubMed ID: 29769819 [TBL] [Abstract][Full Text] [Related]
10. Effects of resistance exercise training on mass, strength, and turnover of bone in growing rats. Notomi T; Lee SJ; Okimoto N; Okazaki Y; Takamoto T; Nakamura T; Suzuki M Eur J Appl Physiol; 2000 Jul; 82(4):268-74. PubMed ID: 10958368 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the effects of growth hormone, voluntary exercise, and food restriction on diaphyseal bone in female F344 rats. Banu MJ; Orhii PB; Mejia W; McCarter RJ; Mosekilde L; Thomsen JS; Kalu DN Bone; 1999 Oct; 25(4):469-80. PubMed ID: 10511115 [TBL] [Abstract][Full Text] [Related]
12. Effect of deconditioning on cortical and cancellous bone growth in the exercise trained young rats. Iwamoto J; Yeh JK; Aloia JF J Bone Miner Res; 2000 Sep; 15(9):1842-9. PubMed ID: 10977004 [TBL] [Abstract][Full Text] [Related]
13. Work volume is an important variable in determining the degree of inhibitory control improvements following resistance exercise. Tomoo K; Suga T; Sugimoto T; Tanaka D; Shimoho K; Dora K; Mok E; Matsumoto S; Tsukamoto H; Takada S; Hashimoto T; Isaka T Physiol Rep; 2020 Aug; 8(15):e14527. PubMed ID: 32776493 [TBL] [Abstract][Full Text] [Related]
14. Effect of resistance exercise training on cortical and cancellous bone in mature male rats. Westerlind KC; Fluckey JD; Gordon SE; Kraemer WJ; Farrell PA; Turner RT J Appl Physiol (1985); 1998 Feb; 84(2):459-64. PubMed ID: 9475853 [TBL] [Abstract][Full Text] [Related]
15. Whole-body vibration and resistance exercise prevent long-term hindlimb unloading-induced bone loss: independent and interactive effects. Li Z; Tan C; Wu Y; Ding Y; Wang H; Chen W; Zhu Y; Ma H; Yang H; Liang W; Jiang S; Wang D; Wang L; Tang G; Wang J Eur J Appl Physiol; 2012 Nov; 112(11):3743-53. PubMed ID: 22371114 [TBL] [Abstract][Full Text] [Related]
16. Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Oxlund BS; Ørtoft G; Andreassen TT; Oxlund H Bone; 2003 Jan; 32(1):69-77. PubMed ID: 12584038 [TBL] [Abstract][Full Text] [Related]
17. Frequency-dependent enhancement of bone formation in murine tibiae and femora with knee loading. Zhang P; Tanaka SM; Sun Q; Turner CH; Yokota H J Bone Miner Metab; 2007; 25(6):383-91. PubMed ID: 17968490 [TBL] [Abstract][Full Text] [Related]
18. Randomized controlled study of effects of sudden impact loading on rat femur. Järvinen TL; Kannus P; Sievänen H; Jolma P; Heinonen A; Järvinen M J Bone Miner Res; 1998 Sep; 13(9):1475-82. PubMed ID: 9738521 [TBL] [Abstract][Full Text] [Related]
19. Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading. Hagino H; Kuraoka M; Kameyama Y; Okano T; Teshima R Bone; 2005 Mar; 36(3):444-53. PubMed ID: 15777678 [TBL] [Abstract][Full Text] [Related]
20. Effects of low-repetition jump exercise on osteogenic response in rats. Nagasawa S; Honda A; Sogo N; Umemura Y J Bone Miner Metab; 2008; 26(3):226-30. PubMed ID: 18470662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]