These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Extracellular vesicular MicroRNA-27a* contributes to cardiac hypertrophy in chronic heart failure. Tian C; Hu G; Gao L; Hackfort BT; Zucker IH J Mol Cell Cardiol; 2020 Jun; 143():120-131. PubMed ID: 32370947 [TBL] [Abstract][Full Text] [Related]
3. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy. Indolfi C; Curcio A J Clin Invest; 2014 May; 124(5):1896-8. PubMed ID: 24743143 [TBL] [Abstract][Full Text] [Related]
4. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. Lyu L; Wang H; Li B; Qin Q; Qi L; Nagarkatti M; Nagarkatti P; Janicki JS; Wang XL; Cui T J Mol Cell Cardiol; 2015 Dec; 89(Pt B):268-79. PubMed ID: 26497614 [TBL] [Abstract][Full Text] [Related]
5. Cardiomyocyte-specific Peli1 contributes to the pressure overload-induced cardiac fibrosis through miR-494-3p-dependent exosomal communication. Tang C; Hou YX; Shi PX; Zhu CH; Lu X; Wang XL; Que LL; Zhu GQ; Liu L; Chen Q; Li CF; Xu Y; Li JT; Li YH FASEB J; 2023 Jan; 37(1):e22699. PubMed ID: 36520055 [TBL] [Abstract][Full Text] [Related]
6. Exosomes as New Intercellular Mediators in Development and Therapeutics of Cardiomyocyte Hypertrophy. Huang Q; Cai B Adv Exp Med Biol; 2017; 998():91-100. PubMed ID: 28936734 [TBL] [Abstract][Full Text] [Related]
7. Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor β (TGFβ1)-dependent paracrine mechanism. Nagalingam RS; Sundaresan NR; Noor M; Gupta MP; Solaro RJ; Gupta M J Biol Chem; 2014 Sep; 289(39):27199-27215. PubMed ID: 25104350 [TBL] [Abstract][Full Text] [Related]
8. Regulatory RNAs and paracrine networks in the heart. Viereck J; Bang C; Foinquinos A; Thum T Cardiovasc Res; 2014 May; 102(2):290-301. PubMed ID: 24562768 [TBL] [Abstract][Full Text] [Related]
9. Mir-30d Regulates Cardiac Remodeling by Intracellular and Paracrine Signaling. Li J; Salvador AM; Li G; Valkov N; Ziegler O; Yeri A; Yang Xiao C; Meechoovet B; Alsop E; Rodosthenous RS; Kundu P; Huan T; Levy D; Tigges J; Pico AR; Ghiran I; Silverman MG; Meng X; Kitchen R; Xu J; Van Keuren-Jensen K; Shah R; Xiao J; Das S Circ Res; 2021 Jan; 128(1):e1-e23. PubMed ID: 33092465 [TBL] [Abstract][Full Text] [Related]
10. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Yuan J; Liu H; Gao W; Zhang L; Ye Y; Yuan L; Ding Z; Wu J; Kang L; Zhang X; Wang X; Zhang G; Gong H; Sun A; Yang X; Chen R; Cui Z; Ge J; Zou Y Theranostics; 2018; 8(9):2565-2582. PubMed ID: 29721099 [No Abstract] [Full Text] [Related]
11. Atrial myocyte-derived exosomal microRNA contributes to atrial fibrosis in atrial fibrillation. Hao H; Yan S; Zhao X; Han X; Fang N; Zhang Y; Dai C; Li W; Yu H; Gao Y; Wang D; Gao Q; Duan Y; Yuan Y; Li Y J Transl Med; 2022 Sep; 20(1):407. PubMed ID: 36064558 [TBL] [Abstract][Full Text] [Related]
12. Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. Hirt MN; Werner T; Indenbirken D; Alawi M; Demin P; Kunze AC; Stenzig J; Starbatty J; Hansen A; Fiedler J; Thum T; Eschenhagen T J Mol Cell Cardiol; 2015 Apr; 81():1-9. PubMed ID: 25633833 [TBL] [Abstract][Full Text] [Related]
13. miR-206 Mediates YAP-Induced Cardiac Hypertrophy and Survival. Yang Y; Del Re DP; Nakano N; Sciarretta S; Zhai P; Park J; Sayed D; Shirakabe A; Matsushima S; Park Y; Tian B; Abdellatif M; Sadoshima J Circ Res; 2015 Oct; 117(10):891-904. PubMed ID: 26333362 [TBL] [Abstract][Full Text] [Related]
15. Exosomes Derived From Hypertrophic Cardiomyocytes Induce Inflammation in Macrophages Yu H; Qin L; Peng Y; Bai W; Wang Z Front Immunol; 2020; 11():606045. PubMed ID: 33613526 [TBL] [Abstract][Full Text] [Related]
16. MicroRNA-27b-3p down-regulates FGF1 and aggravates pathological cardiac remodelling. Li G; Shao Y; Guo HC; Zhi Y; Qiao B; Ma K; Du J; Lai YQ; Li Y Cardiovasc Res; 2022 Jul; 118(9):2139-2151. PubMed ID: 34358309 [TBL] [Abstract][Full Text] [Related]
17. Exosomes derived from cardiac fibroblasts with angiotensin II stimulation provoke hypertrophy and autophagy inhibition in cardiomyocytes. Xu ST; Zhang YX; Liu SL; Liu F; Ye JT Biochem Biophys Res Commun; 2023 Nov; 682():199-206. PubMed ID: 37826943 [TBL] [Abstract][Full Text] [Related]
18. HIMF (Hypoxia-Induced Mitogenic Factor)-IL (Interleukin)-6 Signaling Mediates Cardiomyocyte-Fibroblast Crosstalk to Promote Cardiac Hypertrophy and Fibrosis. Kumar S; Wang G; Zheng N; Cheng W; Ouyang K; Lin H; Liao Y; Liu J Hypertension; 2019 May; 73(5):1058-1070. PubMed ID: 30827145 [TBL] [Abstract][Full Text] [Related]
19. Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cartledge JE; Kane C; Dias P; Tesfom M; Clarke L; Mckee B; Al Ayoubi S; Chester A; Yacoub MH; Camelliti P; Terracciano CM Cardiovasc Res; 2015 Mar; 105(3):260-70. PubMed ID: 25560320 [TBL] [Abstract][Full Text] [Related]
20. Myocyte-specific enhancer factor 2C: a novel target gene of miR-214-3p in suppressing angiotensin II-induced cardiomyocyte hypertrophy. Tang CM; Liu FZ; Zhu JN; Fu YH; Lin QX; Deng CY; Hu ZQ; Yang H; Zheng XL; Cheng JD; Wu SL; Shan ZX Sci Rep; 2016 Oct; 6():36146. PubMed ID: 27796324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]