These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 2474326)

  • 1. NMR studies of intracellular free calcium, free magnesium and sodium in the guinea pig reticulocyte and mature red cell.
    Jelicks LA; Weaver J; Pollack S; Gupta RK
    Biochim Biophys Acta; 1989 Aug; 1012(3):261-6. PubMed ID: 2474326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perinatal cellular ion metabolism: 31P-nuclear magnetic resonance spectroscopic analysis of intracellular free magnesium and pH in maternal and cord blood erythrocytes.
    Bardicef M; Bardicef O; Sorokin Y; Altura BM; Altura BT; Resnick LM
    J Soc Gynecol Investig; 1996; 3(2):66-70. PubMed ID: 8796810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the active calcium extrusion, calcium buffering capacity and ATPase activity in rabbit reticulocytes and mature red cells.
    Lucas M; Mata R; Romero A
    Biochim Biophys Acta; 1988 Jul; 942(1):65-72. PubMed ID: 2968119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red cell amino acid transport. Evidence for the presence of system Gly in guinea pig reticulocytes.
    Fincham DA; Willis JS; Young JD
    Biochim Biophys Acta; 1984 Oct; 777(1):147-50. PubMed ID: 6207858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.
    Petersen A; Kristensen SR; Jacobsen JP; Hørder M
    Biochim Biophys Acta; 1990 Aug; 1035(2):169-74. PubMed ID: 2393665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation transport and cell volume changes in maturing rat reticulocytes.
    Mairbäurl H; Schulz S; Hoffman JF
    Am J Physiol Cell Physiol; 2000 Nov; 279(5):C1621-30. PubMed ID: 11029310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 23Na and 39K NMR studies of ion transport in human erythrocytes.
    Ogino T; Shulman GI; Avison MJ; Gullans SR; den Hollander JA; Shulman RG
    Proc Natl Acad Sci U S A; 1985 Feb; 82(4):1099-103. PubMed ID: 2579385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective loss of calcium permeability on maturation of reticulocytes.
    Wiley JS; Shaller CC
    J Clin Invest; 1977 Jun; 59(6):1113-9. PubMed ID: 864005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a direct reticulocyte origin of dense red cells in sickle cell anemia.
    Bookchin RM; Ortiz OE; Lew VL
    J Clin Invest; 1991 Jan; 87(1):113-24. PubMed ID: 1702096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pig reticulocytes. V. Development of Rb+ influx during in vitro maturation.
    Lauf PK; Zeidler RB; Kim HD
    J Cell Physiol; 1984 Nov; 121(2):284-90. PubMed ID: 6490727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in cellular sodium, potassium, calcium, magnesium, copper and zinc levels during the development and maturation of erythrocytes in the rabbit.
    Valberg LS; Card RT; Paulson EJ; Szivek J
    Br J Haematol; 1967 Jan; 13(1):115-25. PubMed ID: 6018208
    [No Abstract]   [Full Text] [Related]  

  • 12. Cardiac glycoside-induced elevation of intracellular Na+ ion concentration in human erythrocytes studied by 23Na NMR spectroscopy: relationship between inotropy speed and elevation rate of intracellular Na+ ion concentration.
    Tanase T; Murakami N; Nagatsu A; Sakakibara J
    Biol Pharm Bull; 1993 Apr; 16(4):431-3. PubMed ID: 8358396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Member-associated changes during erythropoiesis. On the mechanism of maturation of reticulocytes to erythrocytes.
    Zweig SE; Tokuyasu KT; Singer SJ
    J Supramol Struct Cell Biochem; 1981; 17(2):163-81. PubMed ID: 7321058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular ionic effects of insulin in normal human erythrocytes: a nuclear magnetic resonance study.
    Barbagallo M; Gupta RK; Resnick LM
    Diabetologia; 1993 Feb; 36(2):146-9. PubMed ID: 8458528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in glycine and leucine transport during red cell maturation in the rat.
    Felipe A; Viñas O; Remesar X
    Biosci Rep; 1990 Apr; 10(2):209-16. PubMed ID: 2357485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased adsorption of cytoplasmic proteins to the erythrocyte membrane in ATP-depleted normal and pyruvate kinase-deficient mature cells and reticulocytes.
    Allen DW; Groat JD; Finkel B; Rank BH; Wood PA; Eaton JW
    Am J Hematol; 1983 Feb; 14(1):11-25. PubMed ID: 6837565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of a wide range of intracellular sodium concentrations in erythrocytes by 23Na nuclear magnetic resonance.
    Boulanger Y; Vinay P; Desroches M
    Biophys J; 1985 Apr; 47(4):553-61. PubMed ID: 3986283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular ionic consequences of dietary salt loading in essential hypertension. Relation to blood pressure and effects of calcium channel blockade.
    Resnick LM; Gupta RK; DiFabio B; Barbagallo M; Mann S; Marion R; Laragh JH
    J Clin Invest; 1994 Sep; 94(3):1269-76. PubMed ID: 8083368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-K+ pump activities of high- and low-potassium sheep red cells with internal magnesium and calcium altered by A23187.
    Fujise H; Lauf PK
    J Physiol; 1988 Nov; 405():605-14. PubMed ID: 3151371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.