These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 24743390)
1. A review of the evidence for the use of ventilation as a surrogate measure of energy expenditure. Gastinger S; Donnelly A; Dumond R; Prioux J JPEN J Parenter Enteral Nutr; 2014 Nov; 38(8):926-38. PubMed ID: 24743390 [TBL] [Abstract][Full Text] [Related]
2. Energy expenditure estimate by heart-rate monitor and a portable electromagnetic coils system. Gastinger S; Nicolas G; Sorel A; Sefati H; Prioux J Int J Sport Nutr Exerc Metab; 2012 Apr; 22(2):117-30. PubMed ID: 22349175 [TBL] [Abstract][Full Text] [Related]
3. Reliability of respiratory tidal volume estimation by means of ambulatory inductive plethysmography. Grossman P; Spoerle M; Wilhelm FH Biomed Sci Instrum; 2006; 42():193-8. PubMed ID: 16817607 [TBL] [Abstract][Full Text] [Related]
4. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models. Altini M; Casale P; Penders J; Amft O J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263 [TBL] [Abstract][Full Text] [Related]
5. A new method to estimate energy expenditure from abdominal and rib cage distances. Gastinger S; Sefati H; Nicolas G; Sorel A; Gratas-Delamarche A; Prioux J Eur J Appl Physiol; 2011 Nov; 111(11):2823-35. PubMed ID: 21416146 [TBL] [Abstract][Full Text] [Related]
6. Accuracy of ventilatory measurement employing ambulatory inductive plethysmography during tasks of everyday life. Grossman P; Wilhelm FH; Brutsche M Biol Psychol; 2010 Apr; 84(1):121-8. PubMed ID: 20176075 [TBL] [Abstract][Full Text] [Related]
7. Sitting to standing postural changes: Energy expenditure and a possible mechanism to alleviate sedentary behavior. Wang M; Song Y; Baker JS; Fekete G; Gu Y Physiol Int; 2018 Jun; 105(2):157-165. PubMed ID: 29975127 [TBL] [Abstract][Full Text] [Related]
8. Estimation of free-living energy expenditure using a novel activity monitor designed to minimize obtrusiveness. Bonomi AG; Plasqui G; Goris AH; Westerterp KR Obesity (Silver Spring); 2010 Sep; 18(9):1845-51. PubMed ID: 20186133 [TBL] [Abstract][Full Text] [Related]
9. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents. Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930 [TBL] [Abstract][Full Text] [Related]
10. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study. Ojiambo R; Konstabel K; Veidebaum T; Reilly J; Verbestel V; Huybrechts I; Sioen I; Casajús JA; Moreno LA; Vicente-Rodriguez G; Bammann K; Tubic BM; Marild S; Westerterp K; Pitsiladis YP; J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396 [TBL] [Abstract][Full Text] [Related]
11. An evaluation of the IDEEA™ activity monitor for estimating energy expenditure. Whybrow S; Ritz P; Horgan GW; Stubbs RJ Br J Nutr; 2013 Jan; 109(1):173-83. PubMed ID: 22464547 [TBL] [Abstract][Full Text] [Related]
12. The use of inductive plethysmography in the study of the ventilatory effects of respirator wear. Stark GP; Hodous TK; Hankinson JL Am Ind Hyg Assoc J; 1988 Aug; 49(8):401-8. PubMed ID: 3177218 [TBL] [Abstract][Full Text] [Related]
13. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure. Wang J; Redmond SJ; Voleno M; Narayanan MR; Wang N; Cerutti S; Lovell NH Physiol Meas; 2012 Nov; 33(11):1811-30. PubMed ID: 23110944 [TBL] [Abstract][Full Text] [Related]
14. Energy Expenditure Estimation in Children, Adolescents and Adults by Using a Respiratory Magnetometer Plethysmography System and a Deep Learning Model. Zhou F; Yin X; Hu R; Houssein A; Gastinger S; Martin B; Li S; Prioux J Nutrients; 2022 Oct; 14(19):. PubMed ID: 36235842 [TBL] [Abstract][Full Text] [Related]
15. Estimation of respiratory variables from thoracoabdominal breathing distance: a review of different techniques and calibration methods. Houssein A; Ge D; Gastinger S; Dumond R; Prioux J Physiol Meas; 2019 Apr; 40(3):03TR01. PubMed ID: 30818285 [TBL] [Abstract][Full Text] [Related]
16. Estimating activity-related energy expenditure under sedentary conditions using a tri-axial seismic accelerometer. van Hees VT; van Lummel RC; Westerterp KR Obesity (Silver Spring); 2009 Jun; 17(6):1287-92. PubMed ID: 19282829 [TBL] [Abstract][Full Text] [Related]
17. Energy Expenditure Estimation From Respiratory Magnetometer Plethysmography: A Comparison Study. Houssein A; Prioux J; Gastinger S; Martin B; Zhou F; Ge D IEEE J Biomed Health Inform; 2023 May; 27(5):2345-2352. PubMed ID: 37028060 [TBL] [Abstract][Full Text] [Related]
18. Accuracy of an infrared LED device to measure heart rate and energy expenditure during rest and exercise. Lee CM; Gorelick M; Mendoza A J Sports Sci; 2011 Dec; 29(15):1645-53. PubMed ID: 21995327 [TBL] [Abstract][Full Text] [Related]
19. Validation and calibration of physical activity monitors in children. Puyau MR; Adolph AL; Vohra FA; Butte NF Obes Res; 2002 Mar; 10(3):150-7. PubMed ID: 11886937 [TBL] [Abstract][Full Text] [Related]
20. Inductive plethysmography potential as a surrogate for ventilatory measurements during rest and moderate physical exercise. Cabiddu R; Pantoni CB; Mendes RG; Trimer R; Catai AM; Borghi-Silva A Braz J Phys Ther; 2016 Mar; 20(2):184-8. PubMed ID: 26982454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]