These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24743799)

  • 21. Contribution of salt bridges near the surface of a protein to the conformational stability.
    Takano K; Tsuchimori K; Yamagata Y; Yutani K
    Biochemistry; 2000 Oct; 39(40):12375-81. PubMed ID: 11015217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salt-bridges in the microenvironment of stable protein structures.
    Bandyopadhyay AK; Ul Islam RN; Hazra N
    Bioinformation; 2020; 16(11):900-909. PubMed ID: 34803266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.
    Lee CW; Wang HJ; Hwang JK; Tseng CP
    PLoS One; 2014; 9(11):e112751. PubMed ID: 25393107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ADSBET2: Automated Determination of Salt-Bridge Energy-Terms version 2.
    Nayek A; Gupta PS; Banerjee S; Sur VP; Seth P; Das S; Islam RN; Bandyopadhyay AK
    Bioinformation; 2015; 11(8):413-5. PubMed ID: 26420923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface.
    Siglioccolo A; Paiardini A; Piscitelli M; Pascarella S
    BMC Struct Biol; 2011 Dec; 11():50. PubMed ID: 22192175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsic basis of thermostability of prolyl oligopeptidase from Pyrococcus furiosus.
    Banerjee S; Gupta PSS; Islam RNU; Bandyopadhyay AK
    Sci Rep; 2021 Jun; 11(1):11553. PubMed ID: 34078944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Complex salt bridges in proteins: statistical analysis of structure and function.
    Musafia B; Buchner V; Arad D
    J Mol Biol; 1995 Dec; 254(4):761-70. PubMed ID: 7500348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intra-Helical Salt Bridge Contribution to Membrane Protein Insertion.
    Duart G; Lamb J; Ortiz-Mateu J; Elofsson A; Mingarro I
    J Mol Biol; 2022 Mar; 434(5):167467. PubMed ID: 35093395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins.
    Elcock AH
    J Mol Biol; 1998 Nov; 284(2):489-502. PubMed ID: 9813132
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing pKa computation in proteins with pH adapted conformations.
    Kieseritzky G; Knapp EW
    Proteins; 2008 May; 71(3):1335-48. PubMed ID: 18058906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatics in the stability and misfolding of the prion protein: salt bridges, self energy, and solvation.
    Guest WC; Cashman NR; Plotkin SS
    Biochem Cell Biol; 2010 Apr; 88(2):371-81. PubMed ID: 20453937
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between ion pair geometries and electrostatic strengths in proteins.
    Kumar S; Nussinov R
    Biophys J; 2002 Sep; 83(3):1595-612. PubMed ID: 12202384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrostatic and hydrophobic interactions play a major role in the stability and refolding of halophilic proteins.
    Arakawa T; Tokunaga M
    Protein Pept Lett; 2004 Apr; 11(2):125-32. PubMed ID: 15078200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular bases of protein halotolerance.
    Graziano G; Merlino A
    Biochim Biophys Acta; 2014 Apr; 1844(4):850-8. PubMed ID: 24590113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability.
    de Bakker PI; Hünenberger PH; McCammon JA
    J Mol Biol; 1999 Jan; 285(4):1811-30. PubMed ID: 9917414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges.
    García-Arribas O; Mateo R; Tomczak MM; Davies PL; Mateu MG
    Protein Sci; 2007 Feb; 16(2):227-38. PubMed ID: 17189482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooperativity network of Trp-cage miniproteins: probing salt-bridges.
    Rovó P; Farkas V; Hegyi O; Szolomájer-Csikós O; Tóth GK; Perczel A
    J Pept Sci; 2011 Sep; 17(9):610-9. PubMed ID: 21644245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.