These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. DROMPA: easy-to-handle peak calling and visualization software for the computational analysis and validation of ChIP-seq data. Nakato R; Itoh T; Shirahige K Genes Cells; 2013 Jul; 18(7):589-601. PubMed ID: 23672187 [TBL] [Abstract][Full Text] [Related]
64. COPAR: A ChIP-Seq Optimal Peak Analyzer. Tang B; Wang X; Jin VX Biomed Res Int; 2017; 2017():5346793. PubMed ID: 28357402 [TBL] [Abstract][Full Text] [Related]
65. Spatial clustering for identification of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in embryonic stem cells. Xu S; Grullon S; Ge K; Peng W Methods Mol Biol; 2014; 1150():97-111. PubMed ID: 24743992 [TBL] [Abstract][Full Text] [Related]
66. GeneTrack--a genomic data processing and visualization framework. Albert I; Wachi S; Jiang C; Pugh BF Bioinformatics; 2008 May; 24(10):1305-6. PubMed ID: 18388141 [TBL] [Abstract][Full Text] [Related]
67. agplus: a rapid and flexible tool for aggregation plots. Maehara K; Ohkawa Y Bioinformatics; 2015 Sep; 31(18):3046-7. PubMed ID: 25995229 [TBL] [Abstract][Full Text] [Related]
68. High-throughput ChIPmentation: freely scalable, single day ChIPseq data generation from very low cell-numbers. Gustafsson C; De Paepe A; Schmidl C; Månsson R BMC Genomics; 2019 Jan; 20(1):59. PubMed ID: 30658577 [TBL] [Abstract][Full Text] [Related]
70. ColoWeb: a resource for analysis of colocalization of genomic features. Kim R; Smith OK; Wong WC; Ryan AM; Ryan MC; Aladjem MI BMC Genomics; 2015 Feb; 16(1):142. PubMed ID: 25887597 [TBL] [Abstract][Full Text] [Related]
71. Probabilistic Inference on Multiple Normalized Genome-Wide Signal Profiles With Model Regularization. Wong KC; Peng C; Yan S; Liang C IEEE Trans Nanobioscience; 2017 Jan; 16(1):43-50. PubMed ID: 27893398 [TBL] [Abstract][Full Text] [Related]
72. DEBrowser: interactive differential expression analysis and visualization tool for count data. Kucukural A; Yukselen O; Ozata DM; Moore MJ; Garber M BMC Genomics; 2019 Jan; 20(1):6. PubMed ID: 30611200 [TBL] [Abstract][Full Text] [Related]
73. Visualization and clustering of high-dimensional transcriptome data using GATE. Stumpf PS; MacArthur BD Methods Mol Biol; 2014; 1150():131-9. PubMed ID: 24743994 [TBL] [Abstract][Full Text] [Related]
74. Conformational Studies of Bacterial Chromosomes by High-Throughput Sequencing Methods. Lioy VS; Boccard F Methods Enzymol; 2018; 612():25-45. PubMed ID: 30502944 [TBL] [Abstract][Full Text] [Related]
76. Sandcastle: software for revealing latent information in multiple experimental ChIP-chip datasets via a novel normalisation procedure. Bennett M; Evans KE; Yu S; Teng Y; Webster RM; Powell J; Waters R; Reed SH Sci Rep; 2015 Aug; 5():13395. PubMed ID: 26307543 [TBL] [Abstract][Full Text] [Related]
77. Differential principal component analysis of ChIP-seq. Ji H; Li X; Wang QF; Ning Y Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6789-94. PubMed ID: 23569280 [TBL] [Abstract][Full Text] [Related]
78. Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq. Wang D; Deal RB Methods Mol Biol; 2015; 1284():3-25. PubMed ID: 25757765 [TBL] [Abstract][Full Text] [Related]
79. Protocol for using heterologous spike-ins to normalize for technical variation in chromatin immunoprecipitation. Greulich F; Mechtidou A; Horn T; Uhlenhaut NH STAR Protoc; 2021 Sep; 2(3):100609. PubMed ID: 34189474 [TBL] [Abstract][Full Text] [Related]