These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24743995)

  • 61. Probabilistic partitioning methods to find significant patterns in ChIP-Seq data.
    Nair NU; Kumar S; Moret BM; Bucher P
    Bioinformatics; 2014 Sep; 30(17):2406-13. PubMed ID: 24812341
    [TBL] [Abstract][Full Text] [Related]  

  • 62. AHT-ChIP-seq: a completely automated robotic protocol for high-throughput chromatin immunoprecipitation.
    Aldridge S; Watt S; Quail MA; Rayner T; Lukk M; Bimson MF; Gaffney D; Odom DT
    Genome Biol; 2013 Nov; 14(11):R124. PubMed ID: 24200198
    [TBL] [Abstract][Full Text] [Related]  

  • 63. DROMPA: easy-to-handle peak calling and visualization software for the computational analysis and validation of ChIP-seq data.
    Nakato R; Itoh T; Shirahige K
    Genes Cells; 2013 Jul; 18(7):589-601. PubMed ID: 23672187
    [TBL] [Abstract][Full Text] [Related]  

  • 64. COPAR: A ChIP-Seq Optimal Peak Analyzer.
    Tang B; Wang X; Jin VX
    Biomed Res Int; 2017; 2017():5346793. PubMed ID: 28357402
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Spatial clustering for identification of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in embryonic stem cells.
    Xu S; Grullon S; Ge K; Peng W
    Methods Mol Biol; 2014; 1150():97-111. PubMed ID: 24743992
    [TBL] [Abstract][Full Text] [Related]  

  • 66. GeneTrack--a genomic data processing and visualization framework.
    Albert I; Wachi S; Jiang C; Pugh BF
    Bioinformatics; 2008 May; 24(10):1305-6. PubMed ID: 18388141
    [TBL] [Abstract][Full Text] [Related]  

  • 67. agplus: a rapid and flexible tool for aggregation plots.
    Maehara K; Ohkawa Y
    Bioinformatics; 2015 Sep; 31(18):3046-7. PubMed ID: 25995229
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-throughput ChIPmentation: freely scalable, single day ChIPseq data generation from very low cell-numbers.
    Gustafsson C; De Paepe A; Schmidl C; Månsson R
    BMC Genomics; 2019 Jan; 20(1):59. PubMed ID: 30658577
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A comparative study of ChIP-seq sequencing library preparation methods.
    Sundaram AY; Hughes T; Biondi S; Bolduc N; Bowman SK; Camilli A; Chew YC; Couture C; Farmer A; Jerome JP; Lazinski DW; McUsic A; Peng X; Shazand K; Xu F; Lyle R; Gilfillan GD
    BMC Genomics; 2016 Oct; 17(1):816. PubMed ID: 27769162
    [TBL] [Abstract][Full Text] [Related]  

  • 70. ColoWeb: a resource for analysis of colocalization of genomic features.
    Kim R; Smith OK; Wong WC; Ryan AM; Ryan MC; Aladjem MI
    BMC Genomics; 2015 Feb; 16(1):142. PubMed ID: 25887597
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Probabilistic Inference on Multiple Normalized Genome-Wide Signal Profiles With Model Regularization.
    Wong KC; Peng C; Yan S; Liang C
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):43-50. PubMed ID: 27893398
    [TBL] [Abstract][Full Text] [Related]  

  • 72. DEBrowser: interactive differential expression analysis and visualization tool for count data.
    Kucukural A; Yukselen O; Ozata DM; Moore MJ; Garber M
    BMC Genomics; 2019 Jan; 20(1):6. PubMed ID: 30611200
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Visualization and clustering of high-dimensional transcriptome data using GATE.
    Stumpf PS; MacArthur BD
    Methods Mol Biol; 2014; 1150():131-9. PubMed ID: 24743994
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Conformational Studies of Bacterial Chromosomes by High-Throughput Sequencing Methods.
    Lioy VS; Boccard F
    Methods Enzymol; 2018; 612():25-45. PubMed ID: 30502944
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genome-wide chromatin immunoprecipitation-sequencing in Plasmodium.
    Lopez-Rubio JJ; Siegel TN; Scherf A
    Methods Mol Biol; 2013; 923():321-33. PubMed ID: 22990789
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sandcastle: software for revealing latent information in multiple experimental ChIP-chip datasets via a novel normalisation procedure.
    Bennett M; Evans KE; Yu S; Teng Y; Webster RM; Powell J; Waters R; Reed SH
    Sci Rep; 2015 Aug; 5():13395. PubMed ID: 26307543
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Differential principal component analysis of ChIP-seq.
    Ji H; Li X; Wang QF; Ning Y
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6789-94. PubMed ID: 23569280
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq.
    Wang D; Deal RB
    Methods Mol Biol; 2015; 1284():3-25. PubMed ID: 25757765
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Protocol for using heterologous spike-ins to normalize for technical variation in chromatin immunoprecipitation.
    Greulich F; Mechtidou A; Horn T; Uhlenhaut NH
    STAR Protoc; 2021 Sep; 2(3):100609. PubMed ID: 34189474
    [TBL] [Abstract][Full Text] [Related]  

  • 80. jMOSAiCS: joint analysis of multiple ChIP-seq datasets.
    Zeng X; Sanalkumar R; Bresnick EH; Li H; Chang Q; Keleş S
    Genome Biol; 2013 Apr; 14(4):R38. PubMed ID: 23844871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.