These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 24744024)
1. An overview on selection marker genes for transformation of Saccharomyces cerevisiae. Siewers V Methods Mol Biol; 2014; 1152():3-15. PubMed ID: 24744024 [TBL] [Abstract][Full Text] [Related]
2. An Overview on Selection Marker Genes for Transformation of Saccharomyces cerevisiae. Siewers V Methods Mol Biol; 2022; 2513():1-13. PubMed ID: 35781196 [TBL] [Abstract][Full Text] [Related]
3. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes. Guerra OG; Rubio IG; da Silva Filho CG; Bertoni RA; Dos Santos Govea RC; Vicente EJ J Microbiol Methods; 2006 Dec; 67(3):437-45. PubMed ID: 16831478 [TBL] [Abstract][Full Text] [Related]
4. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Taxis C; Knop M Biotechniques; 2006 Jan; 40(1):73-8. PubMed ID: 16454043 [TBL] [Abstract][Full Text] [Related]
5. Genetic engineering of industrial Saccharomyces cerevisiae strains using a selection/counter-selection approach. Kutyna DR; Cordente AG; Varela C Methods Mol Biol; 2014; 1152():157-68. PubMed ID: 24744032 [TBL] [Abstract][Full Text] [Related]
6. New 'marker swap' plasmids for converting selectable markers on budding yeast gene disruptions and plasmids. Voth WP; Jiang YW; Stillman DJ Yeast; 2003 Aug; 20(11):985-93. PubMed ID: 12898713 [TBL] [Abstract][Full Text] [Related]
7. Transformation system for prototrophic industrial yeasts using the AUR1 gene as a dominant selection marker. Hashida-Okado T; Ogawa A; Kato I; Takesako K FEBS Lett; 1998 Mar; 425(1):117-22. PubMed ID: 9541018 [TBL] [Abstract][Full Text] [Related]
8. Engineering the plant genome: prospects of selection systems using non-antibiotic marker genes. Penna S; Ganapathi TR GM Crops; 2010; 1(3):128-36. PubMed ID: 21865868 [TBL] [Abstract][Full Text] [Related]
9. amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. Solis-Escalante D; Kuijpers NG; Bongaerts N; Bolat I; Bosman L; Pronk JT; Daran JM; Daran-Lapujade P FEMS Yeast Res; 2013 Feb; 13(1):126-39. PubMed ID: 23253382 [TBL] [Abstract][Full Text] [Related]
10. Construction of integrative plasmids suitable for genetic modification of industrial strains of Saccharomyces cerevisiae. Leite FC; Dos Anjos RS; Basilio AC; Leal GF; Simões DA; de Morais MA Plasmid; 2013 Jan; 69(1):114-7. PubMed ID: 23041652 [TBL] [Abstract][Full Text] [Related]
16. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Nakamura S; Mano S; Tanaka Y; Ohnishi M; Nakamori C; Araki M; Niwa T; Nishimura M; Kaminaka H; Nakagawa T; Sato Y; Ishiguro S Biosci Biotechnol Biochem; 2010; 74(6):1315-9. PubMed ID: 20530878 [TBL] [Abstract][Full Text] [Related]
17. Genomic Promoter Shuffling by Using Recyclable Cassettes. Tian X; Zhang W; Xiao W Methods Mol Biol; 2021; 2196():39-51. PubMed ID: 32889711 [TBL] [Abstract][Full Text] [Related]
18. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Winston F; Dollard C; Ricupero-Hovasse SL Yeast; 1995 Jan; 11(1):53-5. PubMed ID: 7762301 [TBL] [Abstract][Full Text] [Related]
19. Positive selectable markers for use with mammalian cells in culture. Eglitis MA Hum Gene Ther; 1991; 2(3):195-201. PubMed ID: 1751589 [TBL] [Abstract][Full Text] [Related]
20. Transformation of lithium-treated yeast cells and the selection of auxotrophic and dominant markers. Mount RC; Jordan BE; Hadfield C Methods Mol Biol; 1996; 53():139-45. PubMed ID: 8924976 [No Abstract] [Full Text] [Related] [Next] [New Search]