These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24744040)

  • 1. Model-guided identification of gene deletion targets for metabolic engineering in Saccharomyces cerevisiae.
    Brochado AR; Patil KR
    Methods Mol Biol; 2014; 1152():281-94. PubMed ID: 24744040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering.
    Cotten C; Reed JL
    Biotechnol J; 2013 May; 8(5):595-604. PubMed ID: 23703951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties.
    Cakar ZP; Turanli-Yildiz B; Alkim C; Yilmaz U
    FEMS Yeast Res; 2012 Mar; 12(2):171-82. PubMed ID: 22136139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.
    Ito Y; Hirasawa T; Shimizu H
    Biosci Biotechnol Biochem; 2014; 78(1):151-9. PubMed ID: 25036498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.
    Yen JY; Nazem-Bokaee H; Freedman BG; Athamneh AI; Senger RS
    Biotechnol J; 2013 May; 8(5):581-94. PubMed ID: 23460591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary programming as a platform for in silico metabolic engineering.
    Patil KR; Rocha I; Förster J; Nielsen J
    BMC Bioinformatics; 2005 Dec; 6():308. PubMed ID: 16375763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes.
    Soons ZI; Ferreira EC; Patil KR; Rocha I
    PLoS One; 2013; 8(4):e61648. PubMed ID: 23626708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of the ATP pool as a tool for metabolic engineering.
    Hädicke O; Klamt S
    Biochem Soc Trans; 2015 Dec; 43(6):1140-5. PubMed ID: 26614651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway.
    Kim B; Cho BR; Hahn JS
    Biotechnol Bioeng; 2014 Jan; 111(1):115-24. PubMed ID: 23836015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of O-methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model-guided network engineering.
    Brochado AR; Patil KR
    Biotechnol Bioeng; 2013 Feb; 110(2):656-9. PubMed ID: 23007522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast metabolic chassis designs for diverse biotechnological products.
    Jouhten P; Boruta T; Andrejev S; Pereira F; Rocha I; Patil KR
    Sci Rep; 2016 Jul; 6():29694. PubMed ID: 27430744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering.
    de Kok S; Kozak BU; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2012 Jun; 12(4):387-97. PubMed ID: 22404754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of the targets for genetic manipulation to improve L-lactate production by Saccharomyces cerevisiae by using a single-gene deletion strain collection.
    Hirasawa T; Takekuni M; Yoshikawa K; Ookubo A; Furusawa C; Shimizu H
    J Biotechnol; 2013 Oct; 168(2):185-93. PubMed ID: 23665193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.
    Da Silva NA; Srikrishnan S
    FEMS Yeast Res; 2012 Mar; 12(2):197-214. PubMed ID: 22129153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolic engineering strategies for carboxylic acids production by Saccharomyces cerevisiae---a review].
    Xu G; Liu L; Chen J
    Wei Sheng Wu Xue Bao; 2011 Dec; 51(12):1571-7. PubMed ID: 22379797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae.
    Hara KY; Kiriyama K; Inagaki A; Nakayama H; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1313-9. PubMed ID: 22234534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae.
    Guo Y; Dong J; Zhou T; Auxillos J; Li T; Zhang W; Wang L; Shen Y; Luo Y; Zheng Y; Lin J; Chen GQ; Wu Q; Cai Y; Dai J
    Nucleic Acids Res; 2015 Jul; 43(13):e88. PubMed ID: 25956650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of computational modeling in metabolic engineering of yeast.
    Kerkhoven EJ; Lahtvee PJ; Nielsen J
    FEMS Yeast Res; 2015 Feb; 15(1):1-13. PubMed ID: 25156867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.