BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 24744118)

  • 1. Astrocytic glycogenolysis: mechanisms and functions.
    Hertz L; Xu J; Song D; Du T; Li B; Yan E; Peng L
    Metab Brain Dis; 2015 Feb; 30(1):317-33. PubMed ID: 24744118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations.
    Xu J; Song D; Bai Q; Zhou L; Cai L; Hertz L; Peng L
    ASN Neuro; 2014 Jan; 6(1):e00132. PubMed ID: 24328680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of astrocytic Na(+),K(+)-ATPase and glycogenolysis for K(+) homeostasis in mammalian brain.
    Hertz L; Gerkau NJ; Xu J; Durry S; Song D; Rose CR; Peng L
    J Neurosci Res; 2015 Jul; 93(7):1019-30. PubMed ID: 25352321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of glycogenolysis by beta adrenergic agonists in skeletal muscle of mice with the phosphorylase kinase deficiency mutation (I strain).
    Gross SR; Mayer SE; Longshore MA
    J Pharmacol Exp Ther; 1976 Sep; 198(3):526-38. PubMed ID: 978457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basic mechanism leading to stimulation of glycogenolysis by isoproterenol, EGF, elevated extracellular K+ concentrations, or GABA.
    Xu J; Song D; Bai Q; Cai L; Hertz L; Peng L
    Neurochem Res; 2014 Apr; 39(4):661-7. PubMed ID: 24500447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain.
    Xu J; Song D; Xue Z; Gu L; Hertz L; Peng L
    Neurochem Res; 2013 Mar; 38(3):472-85. PubMed ID: 23232850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gintonin, a Ginseng-Derived Exogenous Lysophosphatidic Acid Receptor Ligand, Protects Astrocytes from Hypoxic and Re-oxygenation Stresses Through Stimulation of Astrocytic Glycogenolysis.
    Choi SH; Kim HJ; Cho HJ; Park SD; Lee NE; Hwang SH; Cho IH; Hwang H; Rhim H; Kim HC; Nah SY
    Mol Neurobiol; 2019 May; 56(5):3280-3294. PubMed ID: 30117105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycogenolysis, an Astrocyte-Specific Reaction, is Essential for Both Astrocytic and Neuronal Activities Involved in Learning.
    Hertz L; Chen Y
    Neuroscience; 2018 Feb; 370():27-36. PubMed ID: 28668486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the Astrocytic Na(+), K(+)-ATPase in K(+) Homeostasis in Brain: K(+) Uptake, Signaling Pathways and Substrate Utilization.
    Hertz L; Song D; Xu J; Peng L; Gibbs ME
    Neurochem Res; 2015 Dec; 40(12):2505-16. PubMed ID: 25555706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory volume increase in astrocytes exposed to hypertonic medium requires β1 -adrenergic Na(+) /K(+) -ATPase stimulation and glycogenolysis.
    Song D; Xu J; Hertz L; Peng L
    J Neurosci Res; 2015 Jan; 93(1):130-9. PubMed ID: 25124094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis.
    Müller MS; Fox R; Schousboe A; Waagepetersen HS; Bak LK
    Glia; 2014 Apr; 62(4):526-34. PubMed ID: 24464850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Model to Test Whether Glycogenolysis Can Support Astrocytic Energy Demands of Na
    Rothman DL; Dienel GA
    Adv Neurobiol; 2019; 23():385-433. PubMed ID: 31667817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional impact of glycogen degradation on astrocytic signalling.
    Müller MS
    Biochem Soc Trans; 2014 Oct; 42(5):1311-5. PubMed ID: 25233408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of glycogen to astrocytic energetics during brain activation.
    Dienel GA; Cruz NF
    Metab Brain Dis; 2015 Feb; 30(1):281-98. PubMed ID: 24515302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the mechanism of isoproterenol-stimulated glycogenolysis in skeletal muscle of normal and phosphorylase kinase-deficient mice (I strain).
    Gross SR; Bromwell K; Baanante IV
    J Pharmacol Exp Ther; 1978 Jun; 205(3):732-42. PubMed ID: 207857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of muscle phosphorylase b kinase activity by inorganic phosphate and calcium ions.
    Sacktor B; Wu NC; Lescure O; Reed WD
    Biochem J; 1974 Mar; 137(3):535-42. PubMed ID: 4371187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes.
    DiNuzzo M; Mangia S; Maraviglia B; Giove F
    Neurochem Int; 2013 Nov; 63(5):458-64. PubMed ID: 23968961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β1-adrenoceptor-stimulated lactate production in cultured astrocytes is predominantly glycogen-independent.
    Jiang X; Challiss J; Glynn P
    Biochem Pharmacol; 2020 Jul; 177():114035. PubMed ID: 32413424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glycogenolysis in transformed astrocytes in vitro.
    Cummins CJ; Lust WD; Passonneau JV
    J Neurochem; 1983 Jan; 40(1):137-44. PubMed ID: 6294245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.