BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24744160)

  • 1. Single particle tracking reveals biphasic transport during nanorod magnetophoresis through extracellular matrix.
    Mair LO; Superfine R
    Soft Matter; 2014 Jun; 10(23):4118-25. PubMed ID: 24744160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Driven Nanorod Transport Through a Biopolymer Matrix.
    Mair LO; Weinberg IN; Nacev A; Urdaneta MG; Stepanov P; Hilaman R; Himelfarb S; Superfine R
    J Magn Magn Mater; 2015 Apr; 380():295-298. PubMed ID: 25678734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetophoresis of iron oxide nanoparticles at low field gradient: the role of shape anisotropy.
    Lim J; Yeap SP; Leow CH; Toh PY; Low SC
    J Colloid Interface Sci; 2014 May; 421():170-7. PubMed ID: 24594047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cylinders vs. spheres: biofluid shear thinning in driven nanoparticle transport.
    Cribb JA; Meehan TD; Shah SM; Skinner K; Superfine R
    Ann Biomed Eng; 2010 Nov; 38(11):3311-22. PubMed ID: 20571853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell.
    Chen FH; Zhang LM; Chen QT; Zhang Y; Zhang ZJ
    Chem Commun (Camb); 2010 Dec; 46(45):8633-5. PubMed ID: 20941412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of PEGylation on nanoparticle mobility in different models of the extracellular matrix.
    Tomasetti L; Liebl R; Wastl DS; Breunig M
    Eur J Pharm Biopharm; 2016 Nov; 108():145-155. PubMed ID: 27544052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of nanoparticles in magnetic targeting: Comparison of magnetic, diffusive and convective forces and fluxes in the microvasculature, through vascular pores and across the interstitium.
    Kolitsi LI; Yiantsios SG
    Microvasc Res; 2020 Jul; 130():104007. PubMed ID: 32305349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Gradient Magnetophoresis of Nanospheres and Nanorods through a Single Layer of Paper.
    Law JKC; Ng WM; Chong WH; Li Q; Zhang L; Khoerunnisa F; Lim J
    Langmuir; 2023 Apr; 39(14):4904-4916. PubMed ID: 36992604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Two-Way Coupled Eulerian-Lagrangian Computational Magnetic Nanoparticle Targeting Model for Pulsatile Flow in a Patient-Specific Diseased Left Carotid Bifurcation Artery.
    Hewlin RL; Ciero A; Kizito JP
    Cardiovasc Eng Technol; 2019 Jun; 10(2):299-313. PubMed ID: 30927212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetophoresis at the nanoscale: tracking the magnetic targeting efficiency of nanovectors.
    Andriola Silva AK; Di Corato R; Gazeau F; Pellegrino T; Wilhelm C
    Nanomedicine (Lond); 2012 Nov; 7(11):1713-27. PubMed ID: 22709344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of superparamagnetic nanoparticle interactions with extracellular matrix in an in vitro system.
    Kuhn SJ; Hallahan DE; Giorgio TD
    Ann Biomed Eng; 2006 Jan; 34(1):51-8. PubMed ID: 16477503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetophoresis of superparamagnetic nanoparticles at low field gradient: hydrodynamic effect.
    Leong SS; Ahmad Z; Lim J
    Soft Matter; 2015 Sep; 11(35):6968-80. PubMed ID: 26234726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving gold nanorod delivery to the central nervous system by conjugation to the shuttle Angiopep-2.
    Velasco-Aguirre C; Morales-Zavala F; Salas-Huenuleo E; Gallardo-Toledo E; Andonie O; Muñoz L; Rojas X; Acosta G; Sánchez-Navarro M; Giralt E; Araya E; Albericio F; Kogan MJ
    Nanomedicine (Lond); 2017 Oct; 12(20):2503-2517. PubMed ID: 28882086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus.
    Lai SK; O'Hanlon DE; Harrold S; Man ST; Wang YY; Cone R; Hanes J
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1482-7. PubMed ID: 17244708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic nanoparticles-loaded PLA/PEG microspheres as drug carriers.
    Frounchi M; Shamshiri S
    J Biomed Mater Res A; 2015 May; 103(5):1893-8. PubMed ID: 25203941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive relationship and governing physical properties for magnetophoresis.
    Ayansiji AO; Dighe AV; Linninger AA; Singh MR
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30208-30214. PubMed ID: 33203682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release.
    Demarchi CA; Debrassi A; Buzzi Fde C; Corrêa R; Filho VC; Rodrigues CA; Nedelko N; Demchenko P; Ślawska-Waniewska A; Dłużewski P; Greneche JM
    Soft Matter; 2014 May; 10(19):3441-50. PubMed ID: 24647530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetophoresis of nanoparticles.
    Lim J; Lanni C; Evarts ER; Lanni F; Tilton RD; Majetich SA
    ACS Nano; 2011 Jan; 5(1):217-26. PubMed ID: 21141977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging.
    Jie LY; Cai LL; Wang LJ; Ying XY; Yu RS; Zhang MM; Du YZ
    Int J Nanomedicine; 2012; 7():3981-9. PubMed ID: 22866005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells.
    Taratula O; Dani RK; Schumann C; Xu H; Wang A; Song H; Dhagat P; Taratula O
    Int J Pharm; 2013 Dec; 458(1):169-80. PubMed ID: 24091153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.