These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24744496)

  • 1. Kinematics that differentiate the beach flags start between elite and non-elite sprinters.
    Lockie RG; Vickery WM
    Biol Sport; 2013 Dec; 30(4):255-61. PubMed ID: 24744496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematics of the typical beach flags start for young adult sprinters.
    Lockie RG; Vickery WM; Janse de Jonge XA
    J Sports Sci Med; 2012; 11(3):444-51. PubMed ID: 24149352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Resisted Post-Activation Sprint Performance Enhancement in Elite Female Sprinters.
    Matusiński A; Pietraszewski P; Krzysztofik M; Gołaś A
    Front Physiol; 2021; 12():651659. PubMed ID: 33746784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic Stride Characteristics of Maximal Sprint Running of Elite Sprinters - Verification of the "Swing-Pull Technique".
    Mattes K; Wolff S; Alizadeh S
    J Hum Kinet; 2021 Jan; 77():15-24. PubMed ID: 34168688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gender-Related Differences in Mechanics of the Sprint Start and Sprint Acceleration of Top National-Level Sprinters.
    Mirkov DM; Knezevic OM; Garcia-Ramos A; Čoh M; Šarabon N
    Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute Effects of a Speed Training Program on Sprinting Step Kinematics and Performance.
    Mackala K; Fostiak M; Schweyen B; Osik T; Coch M
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31466393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration kinematics in cricketers: implications for performance in the field.
    Robert GL; Callaghan SJ; Jeffriess MD
    J Sports Sci Med; 2014 Jan; 13(1):128-36. PubMed ID: 24570616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical Differences in the Sprint Start Between Faster and Slower High-Level Sprinters.
    Čoh M; Peharec S; Bačić P; Mackala K
    J Hum Kinet; 2017 Feb; 56():29-38. PubMed ID: 28469741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a Body-Weight Supporting Kite on Sprint Running Kinematics in Well-Trained Sprinters.
    Kratky S; Buchecker M; Pfusterschmied J; Szekely C; Müller E
    J Strength Cond Res; 2016 Jan; 30(1):102-8. PubMed ID: 26270692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics of Maximal Speed Sprinting With Different Running Speed, Leg Length, and Step Characteristics.
    Miyashiro K; Nagahara R; Yamamoto K; Nishijima T
    Front Sports Act Living; 2019; 1():37. PubMed ID: 33344960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sprint start kinematics during competition in elite and world-class male and female sprinters.
    Ciacci S; Merni F; Bartolomei S; Di Michele R
    J Sports Sci; 2017 Jul; 35(13):1270-1278. PubMed ID: 27540875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. World-Class Male Sprinters and High Hurdlers Have Similar Start and Initial Acceleration Techniques.
    Bezodis IN; Brazil A; von Lieres Und Wilkau HC; Wood MA; Paradisis GP; Hanley B; Tucker CB; Pollitt L; Merlino S; Vazel PJ; Walker J; Bissas A
    Front Sports Act Living; 2019; 1():23. PubMed ID: 33344947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thigh positioned wearable resistance affects step frequency not step length during 50 m sprint-running.
    Macadam P; Nuell S; Cronin JB; Uthoff AM; Nagahara R; Neville J; Graham SP; Tinwala F
    Eur J Sport Sci; 2020 May; 20(4):444-451. PubMed ID: 31282306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between muscle strength and sprint kinematics in elite sprinters.
    Alexander MJ
    Can J Sport Sci; 1989 Sep; 14(3):148-57. PubMed ID: 2684376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between anthropometric and kinematic measures to practice velocity in elite American 100 m sprinters.
    Murphy A; Clark KP; Murray N; Melton B; Mann R; Rieger R
    J Clin Transl Res; 2021 Oct; 7(5):682-686. PubMed ID: 34778598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-velocity profile changes with forearm wearable resistance during standing start sprinting.
    Macadam P; Mishra M; Feser EH; Uthoff AM; Cronin JB; Zois J; Nagahara R; Tinwala F
    Eur J Sport Sci; 2020 Aug; 20(7):915-919. PubMed ID: 31650888
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of forearm wearable resistance on acceleration mechanics in collegiate track sprinters.
    Uthoff AM; Nagahara R; Macadam P; Neville J; Tinwala F; Graham SP; Cronin JB
    Eur J Sport Sci; 2020 Nov; 20(10):1346-1354. PubMed ID: 31973687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration capability in elite sprinters and ground impulse: Push more, brake less?
    Morin JB; Slawinski J; Dorel S; de Villareal ES; Couturier A; Samozino P; Brughelli M; Rabita G
    J Biomech; 2015 Sep; 48(12):3149-54. PubMed ID: 26209876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic and kinetic differences in block and split-stance standing starts during 30 m sprint-running.
    Macadam P; Nuell S; Cronin JB; Nagahara R; Uthoff AM; Graham SP; Tinwala F; Neville J
    Eur J Sport Sci; 2019 Sep; 19(8):1024-1031. PubMed ID: 30732539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.