These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 24745204)

  • 1. Improving the driver-automation interaction: an approach using automation uncertainty.
    Beller J; Heesen M; Vollrath M
    Hum Factors; 2013 Dec; 55(6):1130-41. PubMed ID: 24745204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automation transparency: implications of uncertainty communication for human-automation interaction and interfaces.
    Kunze A; Summerskill SJ; Marshall R; Filtness AJ
    Ergonomics; 2019 Mar; 62(3):345-360. PubMed ID: 30501566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. User acceptance of cooperative maneuver-based driving--a summary of three studies.
    Kauer M; Franz B; Schreiber M; Bruder R; Geyer S
    Work; 2012; 41 Suppl 1():4258-64. PubMed ID: 22317374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to assess driver's interaction with partially automated driving systems - A framework for early concept assessment.
    van den Beukel AP; van der Voort MC
    Appl Ergon; 2017 Mar; 59(Pt A):302-312. PubMed ID: 27890141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introduction matters: Manipulating trust in automation and reliance in automated driving.
    Körber M; Baseler E; Bengler K
    Appl Ergon; 2018 Jan; 66():18-31. PubMed ID: 28958427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keep Your Scanners Peeled: Gaze Behavior as a Measure of Automation Trust During Highly Automated Driving.
    Hergeth S; Lorenz L; Vilimek R; Krems JF
    Hum Factors; 2016 May; 58(3):509-19. PubMed ID: 26843570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Why Do I Have to Drive Now? Post Hoc Explanations of Takeover Requests.
    Körber M; Prasch L; Bengler K
    Hum Factors; 2018 May; 60(3):305-323. PubMed ID: 29283269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of driver active interventions during automated driving by displaying trajectory pointers-A driving simulator study.
    Ono S; Sasaki H; Kumon H; Fuwamoto Y; Kondo S; Narumi T; Tanikawa T; Hirose M
    Traffic Inj Prev; 2019; 20(sup1):S152-S156. PubMed ID: 31381449
    [No Abstract]   [Full Text] [Related]  

  • 9. Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire.
    Flemisch FO; Bengler K; Bubb H; Winner H; Bruder R
    Ergonomics; 2014; 57(3):343-60. PubMed ID: 24559139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trust in smart systems: sharing driving goals and giving information to increase trustworthiness and acceptability of smart systems in cars.
    Verberne FM; Ham J; Midden CJ
    Hum Factors; 2012 Oct; 54(5):799-810. PubMed ID: 23156624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceived safety and trust in SAE Level 2 partially automated cars: Results from an online questionnaire.
    Nordhoff S; Stapel J; He X; Gentner A; Happee R
    PLoS One; 2021; 16(12):e0260953. PubMed ID: 34932565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speech Auditory Alerts Promote Memory for Alerted Events in a Video-Simulated Self-Driving Car Ride.
    Nees MA; Helbein B; Porter A
    Hum Factors; 2016 May; 58(3):416-26. PubMed ID: 26884437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver compliance to take-over requests with different auditory outputs in conditional automation.
    Forster Y; Naujoks F; Neukum A; Huestegge L
    Accid Anal Prev; 2017 Dec; 109():18-28. PubMed ID: 28992451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sharing control with haptics: seamless driver support from manual to automatic control.
    Mulder M; Abbink DA; Boer ER
    Hum Factors; 2012 Oct; 54(5):786-98. PubMed ID: 23156623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keep the driver in control: Automating automobiles of the future.
    Banks VA; Stanton NA
    Appl Ergon; 2016 Mar; 53 Pt B():389-95. PubMed ID: 26141907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of highly automated driving on the self-perception of drivers in the context of Conduct-by-Wire.
    Kauer M; Franz B; Maier A; Bruder R
    Ergonomics; 2015; 58(2):321-34. PubMed ID: 25343710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness and driver acceptance of a semi-autonomous forward obstacle collision avoidance system.
    Itoh M; Horikome T; Inagaki T
    Appl Ergon; 2013 Sep; 44(5):756-63. PubMed ID: 23453775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly automated driving, secondary task performance, and driver state.
    Merat N; Jamson AH; Lai FC; Carsten O
    Hum Factors; 2012 Oct; 54(5):762-71. PubMed ID: 23156621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driver Vigilance in Automated Vehicles: Hazard Detection Failures Are a Matter of Time.
    Greenlee ET; DeLucia PR; Newton DC
    Hum Factors; 2018 Jun; 60(4):465-476. PubMed ID: 29513611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-Term Evaluation of Drivers' Behavioral Adaptation to an Adaptive Collision Avoidance System.
    Muslim H; Itoh M
    Hum Factors; 2021 Nov; 63(7):1295-1315. PubMed ID: 32484749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.