These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
565 related articles for article (PubMed ID: 24745210)
1. Recent progress in the applications of layer-by-layer assembly to the preparation of nanostructured ion-rejecting water purification membranes. Sanyal O; Lee I J Nanosci Nanotechnol; 2014 Mar; 14(3):2178-89. PubMed ID: 24745210 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly. Saren Q; Qiu CQ; Tang CY Environ Sci Technol; 2011 Jun; 45(12):5201-8. PubMed ID: 21591607 [TBL] [Abstract][Full Text] [Related]
3. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. Yüksel S; Kabay N; Yüksel M J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784 [TBL] [Abstract][Full Text] [Related]
4. Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates. Li N; Wang X; Zhang H; Zhang Z; Ding J; Lu J Environ Sci Pollut Res Int; 2019 Jun; 26(17):17472-17481. PubMed ID: 31020525 [TBL] [Abstract][Full Text] [Related]
5. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Yoon J; Amy G; Chung J; Sohn J; Yoon Y Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331 [TBL] [Abstract][Full Text] [Related]
6. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment. Talaeipour M; Nouri J; Hassani AH; Mahvi AH J Environ Health Sci Eng; 2017; 15():18. PubMed ID: 28736617 [TBL] [Abstract][Full Text] [Related]
7. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications. Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of commercial nanofiltration and reverse osmosis membrane filtration to remove per-and polyfluoroalkyl substances (PFAS): Effects of transmembrane pressures and water matrices. Ma Q; Lei Q; Liu F; Song Z; Khusid B; Zhang W Water Environ Res; 2024 Feb; 96(2):e10983. PubMed ID: 38291820 [TBL] [Abstract][Full Text] [Related]
9. Effect of operating conditions on the separation of ammonium and nitrate ions with nanofiltration and reverse osmosis membranes. Koyuncu I J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Aug; 37(7):1347-59. PubMed ID: 15328697 [TBL] [Abstract][Full Text] [Related]
10. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Radjenović J; Petrović M; Ventura F; Barceló D Water Res; 2008 Aug; 42(14):3601-10. PubMed ID: 18656225 [TBL] [Abstract][Full Text] [Related]
11. Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification. Wang M; Wang Z; Wang X; Wang S; Ding W; Gao C Environ Sci Technol; 2015 Mar; 49(6):3761-8. PubMed ID: 25730158 [TBL] [Abstract][Full Text] [Related]
12. Efficiency of RO/NF membranes at the removal of veterinary antibiotics. Dolar D; Vuković A; Ašperger D; Košutić K Water Sci Technol; 2012; 65(2):317-23. PubMed ID: 22233911 [TBL] [Abstract][Full Text] [Related]
13. Removal of multiple pesticides from water by different types of membranes. Seah MQ; Ng ZC; Lai GS; Lau WJ; Al-Ghouti MA; Alias NH; Ismail AF Chemosphere; 2024 May; 356():141960. PubMed ID: 38604517 [TBL] [Abstract][Full Text] [Related]
14. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study. Bellona C; Drewes JE Water Res; 2007 Sep; 41(17):3948-58. PubMed ID: 17582458 [TBL] [Abstract][Full Text] [Related]
15. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms. Matin A; Jillani SMS; Baig U; Ihsanullah I; Alhooshani K J Environ Manage; 2023 Jul; 338():117682. PubMed ID: 37003228 [TBL] [Abstract][Full Text] [Related]
16. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes. Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049 [TBL] [Abstract][Full Text] [Related]
17. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up. D'Haese A; Le-Clech P; Van Nevel S; Verbeken K; Cornelissen ER; Khan SJ; Verliefde AR Water Res; 2013 Sep; 47(14):5232-44. PubMed ID: 23866149 [TBL] [Abstract][Full Text] [Related]
18. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review. Shefer I; Lopez K; Straub AP; Epsztein R Environ Sci Technol; 2022 Jun; 56(12):7467-7483. PubMed ID: 35549171 [TBL] [Abstract][Full Text] [Related]
19. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Kheriji J; Tabassi D; Hamrouni B Water Sci Technol; 2015; 72(7):1206-16. PubMed ID: 26398037 [TBL] [Abstract][Full Text] [Related]
20. Nanofiltration technology in water treatment and reuse: applications and costs. Shahmansouri A; Bellona C Water Sci Technol; 2015; 71(3):309-19. PubMed ID: 25714628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]