These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
565 related articles for article (PubMed ID: 24745210)
21. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate. Xu P; Capito M; Cath TY J Hazard Mater; 2013 Sep; 260():885-91. PubMed ID: 23892312 [TBL] [Abstract][Full Text] [Related]
22. Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes. Hoek EM; Elimelech M Environ Sci Technol; 2003 Dec; 37(24):5581-8. PubMed ID: 14717167 [TBL] [Abstract][Full Text] [Related]
23. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes. Dolar D; Vuković A; Asperger D; Kosutić K J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537 [TBL] [Abstract][Full Text] [Related]
24. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents. Turan M; Ates A; Inanc B Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123 [TBL] [Abstract][Full Text] [Related]
25. Quantification of functional groups and modeling of their ionization behavior in the active layer of FT30 reverse osmosis membrane. Coronell O; Mariñas BJ; Zhang X; Cahill DG Environ Sci Technol; 2008 Jul; 42(14):5260-6. PubMed ID: 18754378 [TBL] [Abstract][Full Text] [Related]
26. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Tang CY; Fu QS; Criddle CS; Leckie JO Environ Sci Technol; 2007 Mar; 41(6):2008-14. PubMed ID: 17410798 [TBL] [Abstract][Full Text] [Related]
27. Controlled TiO Zhou X; Zhao YY; Kim SR; Elimelech M; Hu S; Kim JH Environ Sci Technol; 2018 Dec; 52(24):14311-14320. PubMed ID: 30516046 [TBL] [Abstract][Full Text] [Related]
29. Response surface methodology and artificial neural network modelling for the performance evaluation of pilot-scale hybrid nanofiltration (NF) & reverse osmosis (RO) membrane system for the treatment of brackish ground water. Srivastava A; K A; Nair A; Ram S; Agarwal S; Ali J; Singh R; Garg MC J Environ Manage; 2021 Jan; 278(Pt 1):111497. PubMed ID: 33130432 [TBL] [Abstract][Full Text] [Related]
30. Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes. Hong SU; Malaisamy R; Bruening ML Langmuir; 2007 Feb; 23(4):1716-22. PubMed ID: 17279649 [TBL] [Abstract][Full Text] [Related]
31. Recent operational experiences of FILMTEC NF270 membrane in Europe. Majamaa K; Warczok J; Lehtinen M Water Sci Technol; 2011; 64(1):228-32. PubMed ID: 22053479 [TBL] [Abstract][Full Text] [Related]
32. Selective transport of ions and molecules across layer-by-layer assembled membranes of polyelectrolytes, p-sulfonato-calix[n]arenes and Prussian Blue-type complex salts. Tieke B; Toutianoush A; Jin W Adv Colloid Interface Sci; 2005 Nov; 116(1-3):121-31. PubMed ID: 16091277 [TBL] [Abstract][Full Text] [Related]
33. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer. Wang F; Zheng T; Xiong R; Wang P; Ma J Chemosphere; 2019 Oct; 233():524-531. PubMed ID: 31185336 [TBL] [Abstract][Full Text] [Related]
34. Highly efficient forward osmosis based on porous membranes--applications and implications. Qi S; Li Y; Zhao Y; Li W; Tang CY Environ Sci Technol; 2015 Apr; 49(7):4690-5. PubMed ID: 25751713 [TBL] [Abstract][Full Text] [Related]
35. Design considerations for wastewater treatment by reverse osmosis. Bartels CR; Wilf M; Andes K; Iong J Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010 [TBL] [Abstract][Full Text] [Related]
36. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. Lin YL; Chiou JH; Lee CH J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524 [TBL] [Abstract][Full Text] [Related]
37. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide. Coronell O; Mi B; Mariñas BJ; Cahill DG Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291 [TBL] [Abstract][Full Text] [Related]
38. Membrane technology applied to acid mine drainage from copper mining. Ambiado K; Bustos C; Schwarz A; Bórquez R Water Sci Technol; 2017 Feb; 75(3-4):705-715. PubMed ID: 28192364 [TBL] [Abstract][Full Text] [Related]
39. Application of nanofiltration and reverse osmosis membranes to the salty and polluted surface water. Koyuncu I; Yazgan M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(7):1321-33. PubMed ID: 11545356 [TBL] [Abstract][Full Text] [Related]
40. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Nataraj SK; Hosamani KM; Aminabhavi TM Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]