BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24745224)

  • 1. Active site nanospace of aminoacyl tRNA synthetase: difference between the class I and class II synthetases.
    Dutta S; Choudhury K; Banik SD; Nandi N
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2280-98. PubMed ID: 24745224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of the activation step of the aminoacylation reaction: a significant difference between class I and class II synthetases.
    Banik SD; Nandi N
    J Biomol Struct Dyn; 2012; 30(6):701-15. PubMed ID: 22731388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of the Active Sites of Dimeric Seryl tRNA Synthetase from Methanopyrus kandleri.
    Dutta S; Nandi N
    J Phys Chem B; 2015 Aug; 119(34):10832-48. PubMed ID: 25794108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminoacylation reaction in the histidyl-tRNA synthetase: fidelity mechanism of the activation step.
    Banik SD; Nandi N
    J Phys Chem B; 2010 Feb; 114(6):2301-11. PubMed ID: 20104869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase.
    Belrhali H; Yaremchuk A; Tukalo M; Berthet-Colominas C; Rasmussen B; Bösecke P; Diat O; Cusack S
    Structure; 1995 Apr; 3(4):341-52. PubMed ID: 7613865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Selective Novel Hits against
    Nyamai DW; Tastan Bishop Ö
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32471245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine.
    Arnez JG; Dock-Bregeon AC; Moras D
    J Mol Biol; 1999 Mar; 286(5):1449-59. PubMed ID: 10064708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction.
    Desogus G; Todone F; Brick P; Onesti S
    Biochemistry; 2000 Jul; 39(29):8418-25. PubMed ID: 10913247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of aminoacyl-tRNA synthetase catalytic core to carrier protein aminoacylation.
    Mocibob M; Ivic N; Luic M; Weygand-Durasevic I
    Structure; 2013 Apr; 21(4):614-26. PubMed ID: 23541895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants.
    Bullock TL; Uter N; Nissan TA; Perona JJ
    J Mol Biol; 2003 Apr; 328(2):395-408. PubMed ID: 12691748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminoacylation at the Atomic Level in Class IIa Aminoacyl-tRNA Synthetases.
    Arnez JG; Sankaranarayanan R; Dock-Bregeon AC; Francklyn CS; Moras D
    J Biomol Struct Dyn; 2000; 17 Suppl 1():23-7. PubMed ID: 22607403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel crystal form of pyrrolysyl-tRNA synthetase reveals the pre- and post-aminoacyl-tRNA synthesis conformational states of the adenylate and aminoacyl moieties and an asparagine residue in the catalytic site.
    Yanagisawa T; Sumida T; Ishii R; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2013 Jan; 69(Pt 1):5-15. PubMed ID: 23275158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Putting amino acids onto tRNAs: The aminoacyl-tRNA synthetases as catalysts.
    Alexander RW; Hendrickson TL
    Enzymes; 2020; 48():39-68. PubMed ID: 33837710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of the CCA sequence of tRNA with the early evolutional aspect of aminoacyl-tRNA synthetases.
    Tamura K; Hasegawa T
    Nucleic Acids Symp Ser; 1999; (42):211-2. PubMed ID: 10780454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional Class I and II Amino Acid-activating Enzymes Can Be Coded by Opposite Strands of the Same Gene.
    Martinez-Rodriguez L; Erdogan O; Jimenez-Rodriguez M; Gonzalez-Rivera K; Williams T; Li L; Weinreb V; Collier M; Chandrasekaran SN; Ambroggio X; Kuhlman B; Carter CW
    J Biol Chem; 2015 Aug; 290(32):19710-25. PubMed ID: 26088142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The long-range electrostatic interactions control tRNA-aminoacyl-tRNA synthetase complex formation.
    Tworowski D; Safro M
    Protein Sci; 2003 Jun; 12(6):1247-51. PubMed ID: 12761395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic potential of aminoacyl-tRNA synthetase navigates tRNA on its pathway to the binding site.
    Tworowski D; Feldman AV; Safro MG
    J Mol Biol; 2005 Jul; 350(5):866-82. PubMed ID: 15964014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand co-crystallization of aminoacyl-tRNA synthetases from infectious disease organisms.
    Moen SO; Edwards TE; Dranow DM; Clifton MC; Sankaran B; Van Voorhis WC; Sharma A; Manoil C; Staker BL; Myler PJ; Lorimer DD
    Sci Rep; 2017 Mar; 7(1):223. PubMed ID: 28303005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The class II aminoacyl-tRNA synthetases and their active site: evolutionary conservation of an ATP binding site.
    Eriani G; Cavarelli J; Martin F; Ador L; Rees B; Thierry JC; Gangloff J; Moras D
    J Mol Evol; 1995 May; 40(5):499-508. PubMed ID: 7783225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity and Constraints of tRNA Aminoacylation Define Directed Evolution of Aminoacyl-tRNA Synthetases.
    Crnković A; Vargas-Rodriguez O; Söll D
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31075874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.