BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 24745303)

  • 1. Formation of conductive networks with both segregated and double-percolated characteristic in conductive polymer composites with balanced properties.
    Zhang S; Deng H; Zhang Q; Fu Q
    ACS Appl Mater Interfaces; 2014 May; 6(9):6835-44. PubMed ID: 24745303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels.
    Zhang X; Yan X; He Q; Wei H; Long J; Guo J; Gu H; Yu J; Liu J; Ding D; Sun L; Wei S; Guo Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6125-38. PubMed ID: 25719265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of Electrical Conductivity on Phase Morphology for Graphene Selectively Located at the Interface of Polypropylene/Polyethylene Composites.
    Tu C; Nagata K; Yan S
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure.
    Wang M; Zhang K; Dai XX; Li Y; Guo J; Liu H; Li GH; Tan YJ; Zeng JB; Guo Z
    Nanoscale; 2017 Aug; 9(31):11017-11026. PubMed ID: 28574065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer Composite Containing Carbon Nanotubes and their Applications.
    Park SH; Bae J
    Recent Pat Nanotechnol; 2017 Jul; 11(2):109-115. PubMed ID: 27978788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Locking carbon nanotubes in confined lattice geometries--a route to low percolation in conducting composites.
    Jurewicz I; Worajittiphon P; King AA; Sellin PJ; Keddie JL; Dalton AB
    J Phys Chem B; 2011 May; 115(20):6395-400. PubMed ID: 21434618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Mechanical Property of Polyamide-6/Graphite Sheet Composites with Segregated 3D Network Binary Structure for High Thermal Conductivity.
    Gao Y; Li Y; Kong X; Ma M
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of highly stretchable conductors via morphological control of carbon nanotube network.
    Lin L; Liu S; Fu S; Zhang S; Deng H; Fu Q
    Small; 2013 Nov; 9(21):3620-9. PubMed ID: 23630114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyethylene Composites with Segregated Carbon Nanotubes Network: Low Frequency Plasmons and High Electromagnetic Interference Shielding Efficiency.
    Vovchenko L; Matzui L; Oliynyk V; Milovanov Y; Mamunya Y; Volynets N; Plyushch A; Kuzhir P
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32138185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Easy fabrication and resistivity-temperature behavior of an anisotropically conductive carbon nanotube-polymer composite.
    Li B; Zhang YC; Li ZM; Li SN; Zhang XN
    J Phys Chem B; 2010 Jan; 114(2):689-96. PubMed ID: 20030304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black.
    Ma PC; Liu MY; Zhang H; Wang SQ; Wang R; Wang K; Wong YK; Tang BZ; Hong SH; Paik KW; Kim JK
    ACS Appl Mater Interfaces; 2009 May; 1(5):1090-6. PubMed ID: 20355896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Electromagnetic Interference Shielding Performance and Wear Resistance of the UHMWPE/PP Blend by Constructing a Segregated Hybrid Conductive Carbon Black-Polymer Network.
    Cheng H; Cao C; Zhang Q; Wang Y; Liu Y; Huang B; Sun XL; Guo Y; Xiao L; Chen Q; Qian Q
    ACS Omega; 2021 Jun; 6(23):15078-15088. PubMed ID: 34151088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers.
    Liu H; Gao J; Huang W; Dai K; Zheng G; Liu C; Shen C; Yan X; Guo J; Guo Z
    Nanoscale; 2016 Jul; 8(26):12977-89. PubMed ID: 27304516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres.
    Tang C; Long G; Hu X; Wong KW; Lau WM; Fan M; Mei J; Xu T; Wang B; Hui D
    Nanoscale; 2014 Jul; 6(14):7877-88. PubMed ID: 24791273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significant Enhancement of Thermal Conductivity in Polymer Composite via Constructing Macroscopic Segregated Filler Networks.
    Zhou H; Deng H; Zhang L; Fu Q
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29071-29081. PubMed ID: 28792203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of electrical conductive composites: tuning the morphology to improve the electrical properties of graphene filled immiscible polymer blends.
    Mao C; Zhu Y; Jiang W
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5281-6. PubMed ID: 22950786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phase coarsening under melt annealing on the electrical performance of polymer composites with a double percolation structure.
    Sun XR; Gong T; Pu JH; Bao RY; Xie BH; Yang MB; Yang W
    Phys Chem Chem Phys; 2017 Dec; 20(1):137-147. PubMed ID: 29211093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generic Method to Create Segregated Structures toward Robust, Flexible, Highly Conductive Elastomer Composites.
    Zhang C; Tang Z; An X; Fang S; Wu S; Guo B
    ACS Appl Mater Interfaces; 2021 May; 13(20):24154-24163. PubMed ID: 33978407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Electrical and Thermal Conductivities of Polymer Composites with a Segregated Network of Graphene Nanoplatelets.
    Kim KH; Jang JU; Yoo GY; Kim SH; Oh MJ; Kim SY
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically Conductive CNT Composites at Loadings below Theoretical Percolation Values.
    Earp B; Simpson J; Phillips J; Grbovic D; Vidmar S; McCarthy J; Luhrs CC
    Nanomaterials (Basel); 2019 Mar; 9(4):. PubMed ID: 30934937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.