These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24745344)

  • 1. [Reconstruction of nasal cartilage defects using a tissue engineering technique based on combination of high-density polyethylene and hydrogel].
    Durbec M; Mayer N; Vertu-Ciolino D; Disant F; Mallein-Gerin F; Perrier-Groult E
    Pathol Biol (Paris); 2014 Jun; 62(3):137-45. PubMed ID: 24745344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cartilage-characteristic matrix reconstruction by sequential addition of soluble factors during expansion of human articular chondrocytes and their cultivation in collagen sponges.
    Claus S; Mayer N; Aubert-Foucher E; Chajra H; Perrier-Groult E; Lafont J; Piperno M; Damour O; Mallein-Gerin F
    Tissue Eng Part C Methods; 2012 Feb; 18(2):104-12. PubMed ID: 21933021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of collagen production in mouse chondrocytes by using a combination of bone morphogenetic protein-2 and small interfering RNA targeting Col1a1 for hydrogel-based tissue-engineered cartilage.
    Perrier-Groult E; Pasdeloup M; Malbouyres M; Galéra P; Mallein-Gerin F
    Tissue Eng Part C Methods; 2013 Aug; 19(8):652-64. PubMed ID: 23311625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of growth factors on cell proliferation, matrix deposition, and morphology of human nasal septal chondrocytes cultured in monolayer.
    Richmon JD; Sage AB; Shelton E; Schumacher BL; Sah RL; Watson D
    Laryngoscope; 2005 Sep; 115(9):1553-60. PubMed ID: 16148694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Human chondrocyte responsiveness to bone morphogenetic protein-2 after their in vitro dedifferentiation: potential use of bone morphogenetic protein-2 for cartilage cell therapy].
    Salentey V; Claus S; Bougault C; Paumier A; Aubert-Foucher E; Perrier-Groult E; Ronzière MC; Freyria AM; Galéra P; Beauchef G; Duterque-Coquillaud M; Piperno M; Damour O; Herbage B; Mallein-Gerin F
    Pathol Biol (Paris); 2009 Jun; 57(4):282-9. PubMed ID: 18538953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autologous nasal chondrocytes delivered by injectable hydrogel for in vivo articular cartilage regeneration.
    Chen W; Li C; Peng M; Xie B; Zhang L; Tang X
    Cell Tissue Bank; 2018 Mar; 19(1):35-46. PubMed ID: 28815373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function.
    Schwarz S; Elsaesser AF; Koerber L; Goldberg-Bockhorn E; Seitz AM; Bermueller C; Dürselen L; Ignatius A; Breiter R; Rotter N
    J Tissue Eng Regen Med; 2015 Dec; 9(12):E239-51. PubMed ID: 23193064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced hyaline cartilage matrix synthesis in collagen sponge scaffolds by using siRNA to stabilize chondrocytes phenotype cultured with bone morphogenetic protein-2 under hypoxia.
    Legendre F; Ollitrault D; Hervieu M; Baugé C; Maneix L; Goux D; Chajra H; Mallein-Gerin F; Boumediene K; Galera P; Demoor M
    Tissue Eng Part C Methods; 2013 Jul; 19(7):550-67. PubMed ID: 23270543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BMP-2 embedded atelocollagen scaffold for tissue-engineered cartilage cultured in the medium containing insulin and triiodothyronine--a new protocol for three-dimensional in vitro culture of human chondrocytes.
    Ko EC; Fujihara Y; Ogasawara T; Asawa Y; Nishizawa S; Nagata S; Takato T; Hoshi K
    Tissue Eng Part C Methods; 2012 May; 18(5):374-86. PubMed ID: 22107247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-engineered human nasal septal cartilage using the alginate-recovered-chondrocyte method.
    Chia SH; Schumacher BL; Klein TJ; Thonar EJ; Masuda K; Sah RL; Watson D
    Laryngoscope; 2004 Jan; 114(1):38-45. PubMed ID: 14709992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of bioactive factors and IEIK13 self-assembling peptide hydrogel promotes cartilage matrix production by human nasal chondrocytes.
    Dufour A; Buffier M; Vertu-Ciolino D; Disant F; Mallein-Gerin F; Perrier-Groult E
    J Biomed Mater Res A; 2019 Apr; 107(4):893-903. PubMed ID: 30650239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture.
    Homicz MR; Chia SH; Schumacher BL; Masuda K; Thonar EJ; Sah RL; Watson D
    Laryngoscope; 2003 Jan; 113(1):25-32. PubMed ID: 12514377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA Interference and BMP-2 Stimulation Allows Equine Chondrocytes Redifferentiation in 3D-Hypoxia Cell Culture Model: Application for Matrix-Induced Autologous Chondrocyte Implantation.
    Rakic R; Bourdon B; Hervieu M; Branly T; Legendre F; Saulnier N; Audigié F; Maddens S; Demoor M; Galera P
    Int J Mol Sci; 2017 Aug; 18(9):. PubMed ID: 28837082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal combination of soluble factors for tissue engineering of permanent cartilage from cultured human chondrocytes.
    Liu G; Kawaguchi H; Ogasawara T; Asawa Y; Kishimoto J; Takahashi T; Chung UI; Yamaoka H; Asato H; Nakamura K; Takato T; Hoshi K
    J Biol Chem; 2007 Jul; 282(28):20407-15. PubMed ID: 17493933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cartilage tissue engineering of nasal septal chondrocyte-macroaggregates in human demineralized bone matrix.
    Liese J; Marzahn U; El Sayed K; Pruss A; Haisch A; Stoelzel K
    Cell Tissue Bank; 2013 Jun; 14(2):255-66. PubMed ID: 22714645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy.
    Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH
    Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of in vivo tissue engineered human hyaline cartilage in the shape of a trachea with internal support.
    Ruszymah BH; Chua K; Latif MA; Hussein FN; Saim AB
    Int J Pediatr Otorhinolaryngol; 2005 Nov; 69(11):1489-95. PubMed ID: 15941595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.
    Bardsley K; Kwarciak A; Freeman C; Brook I; Hatton P; Crawford A
    Biomaterials; 2017 Jan; 112():313-323. PubMed ID: 27770634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potency of culture-expanded nasal septum chondrocytes for tissue engineering of cartilage.
    van Osch GJ; Marijnissen WJ; van der Veen SW; Verwoerd-Verhoef HL
    Am J Rhinol; 2001; 15(3):187-92. PubMed ID: 11453506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.