These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 24745718)
41. Is oxidative stress related to cadmium accumulation in the Mollusc Crassostrea angulata? Macías-Mayorga D; Laiz I; Moreno-Garrido I; Blasco J Aquat Toxicol; 2015 Apr; 161():231-41. PubMed ID: 25726715 [TBL] [Abstract][Full Text] [Related]
42. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Xiong D; Fang T; Yu L; Sima X; Zhu W Sci Total Environ; 2011 Mar; 409(8):1444-52. PubMed ID: 21296382 [TBL] [Abstract][Full Text] [Related]
43. Effects of cadmium exposure on expression and activity of P-glycoprotein in eastern oysters, Crassostrea virginica Gmelin. Ivanina AV; Sokolova IM Aquat Toxicol; 2008 Jun; 88(1):19-28. PubMed ID: 18453012 [TBL] [Abstract][Full Text] [Related]
44. The impact of ocean acidification and cadmium on the immune responses of Pacific oyster, Crassostrea gigas. Cao R; Liu Y; Wang Q; Zhang Q; Yang D; Liu H; Qu Y; Zhao J Fish Shellfish Immunol; 2018 Oct; 81():456-462. PubMed ID: 30064018 [TBL] [Abstract][Full Text] [Related]
45. Seawater acidification aggravated cadmium toxicity in the oyster Crassostrea gigas: Metal bioaccumulation, subcellular distribution and multiple physiological responses. Cao R; Liu Y; Wang Q; Dong Z; Yang D; Liu H; Ran W; Qu Y; Zhao J Sci Total Environ; 2018 Nov; 642():809-823. PubMed ID: 29925053 [TBL] [Abstract][Full Text] [Related]
46. Acute hypoxic exposure: Effect on hemocyte functional parameters and antioxidant potential in gills of the pacific oyster, Crassostrea gigas. Andreyeva AY; Gostyukhina OL; Kladchenko ES; Vodiasova EA; Chelebieva ES Mar Environ Res; 2021 Jul; 169():105389. PubMed ID: 34171591 [TBL] [Abstract][Full Text] [Related]
47. Immunomodulation by the interactive effects of cadmium and hypercapnia in marine bivalves Crassostrea virginica and Mercenaria mercenaria. Ivanina AV; Hawkins C; Sokolova IM Fish Shellfish Immunol; 2014 Apr; 37(2):299-312. PubMed ID: 24594010 [TBL] [Abstract][Full Text] [Related]
48. Mitochondrial activity, hemocyte parameters and lipid composition modulation by dietary conditioning in the Pacific oyster Crassostrea gigas. Dudognon T; Lambert C; Quere C; Auffret M; Soudant P; Kraffe E J Comp Physiol B; 2014 Apr; 184(3):303-17. PubMed ID: 24441864 [TBL] [Abstract][Full Text] [Related]
49. Effects of acclimation temperature and cadmium exposure on mitochondrial aconitase and LON protease from a model marine ectotherm, Crassostrea virginica. Sanni B; Williams K; Sokolov EP; Sokolova IM Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jan; 147(1):101-12. PubMed ID: 17869588 [TBL] [Abstract][Full Text] [Related]
50. Tracing cadmium contamination kinetics and pathways in oysters (Crassostrea gigas) by multiple stable Cd isotope spike experiments. Strady E; Schäfer J; Baudrimont M; Blanc G Ecotoxicol Environ Saf; 2011 May; 74(4):600-6. PubMed ID: 21035189 [TBL] [Abstract][Full Text] [Related]
51. Biochemical biomarkers in gills of mangrove oyster Crassostrea rhizophorae from three Brazilian estuaries. Zanette J; Monserrat JM; Bianchini A Comp Biochem Physiol C Toxicol Pharmacol; 2006 Jun; 143(2):187-95. PubMed ID: 16542881 [TBL] [Abstract][Full Text] [Related]
52. Pollutant effects on Pacific oyster, Crassostrea gigas (Thunberg), hemocytes: screening of 23 molecules using flow cytometry. Gagnaire B; Thomas-Guyon H; Burgeot T; Renault T Cell Biol Toxicol; 2006 Jan; 22(1):1-14. PubMed ID: 16463015 [TBL] [Abstract][Full Text] [Related]
53. How important are glutathione and thiol reductases to oyster hemocyte function? Mello DF; Arl M; Trevisan R; Dafre AL Fish Shellfish Immunol; 2015 Oct; 46(2):566-72. PubMed ID: 26210700 [TBL] [Abstract][Full Text] [Related]
54. Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Ali D; Alarifi S; Kumar S; Ahamed M; Siddiqui MA Aquat Toxicol; 2012 Nov; 124-125():83-90. PubMed ID: 22917558 [TBL] [Abstract][Full Text] [Related]
55. In vitro exposure to fullerene C(60) influences redox state and lipid peroxidation in brain and gills from Cyprinus carpio (Cyprinidae). Ferreira JL; Barros DM; Geracitano LA; Fillmann G; Fossa CE; de Almeida EA; de Castro Prado M; Neves BR; Pinheiro MV; Monserrat JM Environ Toxicol Chem; 2012 May; 31(5):961-7. PubMed ID: 22410840 [TBL] [Abstract][Full Text] [Related]
56. Tissue specific responses of oysters, Crassostrea virginica, to silver nanoparticles. McCarthy MP; Carroll DL; Ringwood AH Aquat Toxicol; 2013 Aug; 138-139():123-8. PubMed ID: 23728357 [TBL] [Abstract][Full Text] [Related]
57. Particulate nature of inhaled zinc oxide nanoparticles determines systemic effects and mechanisms of pulmonary inflammation in mice. Chen JK; Ho CC; Chang H; Lin JF; Yang CS; Tsai MH; Tsai HT; Lin P Nanotoxicology; 2015 Feb; 9(1):43-53. PubMed ID: 24559390 [TBL] [Abstract][Full Text] [Related]
58. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Mwaanga P; Carraway ER; van den Hurk P Aquat Toxicol; 2014 May; 150():201-9. PubMed ID: 24699179 [TBL] [Abstract][Full Text] [Related]
59. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Carmona ER; Inostroza-Blancheteau C; Rubio L; Marcos R Toxicol Ind Health; 2016 Dec; 32(12):1987-2001. PubMed ID: 26419260 [TBL] [Abstract][Full Text] [Related]
60. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Hao L; Chen L Ecotoxicol Environ Saf; 2012 Jun; 80():103-10. PubMed ID: 22425733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]