These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 24745743)

  • 1. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Laboratory on a microfluidic chip].
    Lin B; Qin J
    Se Pu; 2005 Sep; 23(5):456-63. PubMed ID: 16350786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.
    Xu CX; Yin XF
    J Chromatogr A; 2011 Feb; 1218(5):726-32. PubMed ID: 21185567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative study of cellular heterogeneity in doxorubicin uptake and its pharmacological effect on cancer cells.
    Deng B; Wang ZM; Zhou ZH; Liu YM; Yang XL; Song J; Xiao YX
    Biomed Chromatogr; 2014 Oct; 28(10):1393-401. PubMed ID: 24687250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells.
    Bisaria A; Hersen P; McClean MN
    Methods Mol Biol; 2014; 1205():111-29. PubMed ID: 25213242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating.
    Logtenberg H; Lopez-Martinez MJ; Feringa BL; Browne WR; Verpoorte E
    Lab Chip; 2011 Jun; 11(12):2030-4. PubMed ID: 21409272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex MicroRNA Detection on a Power-free Microfluidic Chip with Laminar Flow-assisted Dendritic Amplification.
    Ishihara R; Hasegawa K; Hosokawa K; Maeda M
    Anal Sci; 2015; 31(7):573-6. PubMed ID: 26165275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional (3D) hydrodynamic focusing for continuous sampling and analysis of adherent cells.
    Xu C; Wang M; Yin X
    Analyst; 2011 Oct; 136(19):3877-83. PubMed ID: 21785798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection.
    Shameli SM; Elbuken C; Ou J; Ren CL; Pawliszyn J
    Electrophoresis; 2011 Feb; 32(3-4):333-9. PubMed ID: 21298660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips.
    Yu L; Huang H; Dong X; Wu D; Qin J; Lin B
    Electrophoresis; 2008 Dec; 29(24):5055-60. PubMed ID: 19130590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated analysis of dynamic behavior of single cells in picoliter droplets.
    Khorshidi MA; Rajeswari PK; Wählby C; Joensson HN; Andersson Svahn H
    Lab Chip; 2014 Mar; 14(5):931-7. PubMed ID: 24385254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell enzyme-free dissociation of neurospheres using a microfluidic chip.
    Lin CH; Lee DC; Chang HC; Chiu IM; Hsu CH
    Anal Chem; 2013 Dec; 85(24):11920-8. PubMed ID: 24228937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous analysis of dye-loaded, single cells on a microfluidic chip.
    Phillips KS; Lai HH; Johnson E; Sims CE; Allbritton NL
    Lab Chip; 2011 Apr; 11(7):1333-41. PubMed ID: 21327264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip.
    Zhao Y; Lai HS; Zhang G; Lee GB; Li WJ
    Lab Chip; 2014 Nov; 14(22):4426-34. PubMed ID: 25254511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.
    Benavente-Babace A; Gallego-Pérez D; Hansford DJ; Arana S; Pérez-Lorenzo E; Mujika M
    Biosens Bioelectron; 2014 Nov; 61():298-305. PubMed ID: 24907537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device.
    Matsuura K; Takenami M; Kuroda Y; Hyakutake T; Yanase S; Naruse K
    Reprod Biomed Online; 2012 Jan; 24(1):109-15. PubMed ID: 22116072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.