These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 24745850)
1. Improvements to single particle ICPMS by the online coupling of ion exchange resins. Hadioui M; Peyrot C; Wilkinson KJ Anal Chem; 2014 May; 86(10):4668-74. PubMed ID: 24745850 [TBL] [Abstract][Full Text] [Related]
2. Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS. Proulx K; Hadioui M; Wilkinson KJ Anal Bioanal Chem; 2016 Jul; 408(19):5147-55. PubMed ID: 26970748 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic chromatography online with single particle-inductively coupled plasma mass spectrometry for ultratrace detection of metal-containing nanoparticles. Pergantis SA; Jones-Lepp TL; Heithmar EM Anal Chem; 2012 Aug; 84(15):6454-62. PubMed ID: 22804728 [TBL] [Abstract][Full Text] [Related]
4. Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS. Aznar R; Barahona F; Geiss O; Ponti J; José Luis T; Barrero-Moreno J Talanta; 2017 Dec; 175():200-208. PubMed ID: 28841979 [TBL] [Abstract][Full Text] [Related]
5. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Tuoriniemi J; Cornelis G; Hassellöv M Anal Chem; 2012 May; 84(9):3965-72. PubMed ID: 22483433 [TBL] [Abstract][Full Text] [Related]
6. Combination of cloud point extraction with single particle inductively coupled plasma mass spectrometry to characterize silver nanoparticles in soil leachates. Torrent L; Laborda F; Marguí E; Hidalgo M; Iglesias M Anal Bioanal Chem; 2019 Aug; 411(20):5317-5329. PubMed ID: 31165186 [TBL] [Abstract][Full Text] [Related]
7. Detection and Characterization of ZnO Nanoparticles in Surface and Waste Waters Using Single Particle ICPMS. Hadioui M; Merdzan V; Wilkinson KJ Environ Sci Technol; 2015 May; 49(10):6141-8. PubMed ID: 25923247 [TBL] [Abstract][Full Text] [Related]
8. International interlaboratory study for sizing and quantification of Ag nanoparticles in food simulants by single-particle ICPMS. Linsinger TP; Peters R; Weigel S Anal Bioanal Chem; 2014 Jun; 406(16):3835-43. PubMed ID: 24357009 [TBL] [Abstract][Full Text] [Related]
9. Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Fréchette-Viens L; Hadioui M; Wilkinson KJ Talanta; 2019 Aug; 200():156-162. PubMed ID: 31036168 [TBL] [Abstract][Full Text] [Related]
10. Dissolved metal ion removal by online hollow fiber ultrafiltration for enhanced size characterization of metal-containing nanoparticles with single-particle ICP-MS. Jiang H; Wang Y; Tan Z; Hu L; Shi J; Liu G; Yin Y; Cai Y; Jiang G J Environ Sci (China); 2023 Apr; 126():494-505. PubMed ID: 36503776 [TBL] [Abstract][Full Text] [Related]
11. Selective detection and characterization of nanoparticles from motor vehicles. Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN; Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271 [TBL] [Abstract][Full Text] [Related]
12. Single Particle-Inductively Coupled Plasma Mass Spectroscopy Analysis of Metallic Nanoparticles in Environmental Samples with Large Dissolved Analyte Fractions. Schwertfeger DM; Velicogna JR; Jesmer AH; Scroggins RP; Princz JI Anal Chem; 2016 Oct; 88(20):9908-9914. PubMed ID: 27629046 [TBL] [Abstract][Full Text] [Related]
13. Direct Online Determination of Laser-Induced Particle Size Distribution by ICPMS. Donard A; Claverie F; Pointurier F; Blitz Frayret C; Svatosova B; Pécheyran C Anal Chem; 2017 Sep; 89(17):8791-8799. PubMed ID: 28689407 [TBL] [Abstract][Full Text] [Related]
14. Development and application of an aerosol screening model for size-resolved urban aerosols. Stanier CO; Lee SR; Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039 [TBL] [Abstract][Full Text] [Related]
15. Antibacterial activity of nanosilver ions and particles. Sotiriou GA; Pratsinis SE Environ Sci Technol; 2010 Jul; 44(14):5649-54. PubMed ID: 20583805 [TBL] [Abstract][Full Text] [Related]
16. Nanoparticle Analysis in Biomaterials Using Laser Ablation-Single Particle-Inductively Coupled Plasma Mass Spectrometry. Metarapi D; Šala M; Vogel-Mikuš K; Šelih VS; van Elteren JT Anal Chem; 2019 May; 91(9):6200-6205. PubMed ID: 30929434 [TBL] [Abstract][Full Text] [Related]
17. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles. Hagendorfer H; Kaegi R; Traber J; Mertens SF; Scherrers R; Ludwig C; Ulrich A Anal Chim Acta; 2011 Nov; 706(2):367-78. PubMed ID: 22023875 [TBL] [Abstract][Full Text] [Related]
18. Speciation of silver nanoparticles and silver(I) by reversed-phase liquid chromatography coupled to ICPMS. Soto-Alvaredo J; Montes-Bayón M; Bettmer J Anal Chem; 2013 Feb; 85(3):1316-21. PubMed ID: 23305255 [TBL] [Abstract][Full Text] [Related]
19. Toxicity of silver nanoparticles in macrophages. Pratsinis A; Hervella P; Leroux JC; Pratsinis SE; Sotiriou GA Small; 2013 Aug; 9(15):2576-84. PubMed ID: 23418027 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous determination of size and quantification of silica nanoparticles by asymmetric flow field-flow fractionation coupled to ICPMS using silica nanoparticles standards. Barahona F; Geiss O; Urbán P; Ojea-Jimenez I; Gilliland D; Barrero-Moreno J Anal Chem; 2015 Mar; 87(5):3039-47. PubMed ID: 25627280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]