BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 24746018)

  • 1. Strain energy in the femoral neck during exercise.
    Martelli S; Kersh ME; Schache AG; Pandy MG
    J Biomech; 2014 Jun; 47(8):1784-91. PubMed ID: 24746018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling Human Locomotion to Inform Exercise Prescription for Osteoporosis.
    Martelli S; Beck B; Saxby D; Lloyd D; Pivonka P; Taylor M
    Curr Osteoporos Rep; 2020 Jun; 18(3):301-311. PubMed ID: 32335858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Hip centralising forces of the iliotibial tract with various femoral neck angles].
    Birnbaum K; Pandorf T; Prescher A; Niethard FU; Weisskopf M
    Z Orthop Unfall; 2009; 147(3):341-9. PubMed ID: 19551586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise loading history and femoral neck strength in a sideways fall: A three-dimensional finite element modeling study.
    Abe S; Narra N; Nikander R; Hyttinen J; Kouhia R; Sievänen H
    Bone; 2016 Nov; 92():9-17. PubMed ID: 27477004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomical and biomechanical investigations of the iliotibial tract.
    Birnbaum K; Siebert CH; Pandorf T; Schopphoff E; Prescher A; Niethard FU
    Surg Radiol Anat; 2004 Dec; 26(6):433-46. PubMed ID: 15378277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture.
    Lotz JC; Cheal EJ; Hayes WC
    Osteoporos Int; 1995; 5(4):252-61. PubMed ID: 7492864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite-element analysis of the effect of basic hip movements on the mechanical stimulus within a proximal femur.
    Tovar-López FJ; Domínguez-Hernández VM; Diez-García Mdel P; Araujo-Monsalvo VM
    Rev Invest Clin; 2014 Jul; 66 Suppl 1():S32-8. PubMed ID: 25264795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a surrogate model based on patient weight, bone mass and geometry to predict femoral neck strains and fracture loads.
    Taylor M; Perilli E; Martelli S
    J Biomech; 2017 Apr; 55():121-127. PubMed ID: 28325584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of femoral strain calculations to anatomical scaling errors in musculoskeletal models of movement.
    Martelli S; Kersh ME; Pandy MG
    J Biomech; 2015 Oct; 48(13):3606-15. PubMed ID: 26315919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of progressive high-impact exercise on femoral neck structural strength in postmenopausal women with mild knee osteoarthritis: a 12-month RCT.
    Multanen J; Rantalainen T; Kautiainen H; Ahola R; Jämsä T; Nieminen MT; Lammentausta E; Häkkinen A; Kiviranta I; Heinonen A
    Osteoporos Int; 2017 Apr; 28(4):1323-1333. PubMed ID: 28035445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants.
    Kutzner I; Richter A; Gordt K; Dymke J; Damm P; Duda GN; Günzl R; Bergmann G
    PLoS One; 2017; 12(3):e0171972. PubMed ID: 28319145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femoral shaft strains during daily activities: Implications for atypical femoral fractures.
    Martelli S; Pivonka P; Ebeling PR
    Clin Biomech (Bristol, Avon); 2014 Sep; 29(8):869-76. PubMed ID: 25156184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes.
    Abe S; Narra N; Nikander R; Hyttinen J; Kouhia R; Sievänen H
    J Biomech; 2018 Jul; 76():136-143. PubMed ID: 29921524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical Activity for Strengthening Fracture Prone Regions of the Proximal Femur.
    Fuchs RK; Kersh ME; Carballido-Gamio J; Thompson WR; Keyak JH; Warden SJ
    Curr Osteoporos Rep; 2017 Feb; 15(1):43-52. PubMed ID: 28133707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ranking of osteogenic potential of physical exercises in postmenopausal women based on femoral neck strains.
    Pellikaan P; Giarmatzis G; Vander Sloten J; Verschueren S; Jonkers I
    PLoS One; 2018; 13(4):e0195463. PubMed ID: 29617448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Stress distribution on the femoral neck at different abduction angles of the hip joint: a finite element analysis].
    Zhang MC; Shi FL; Zhao WD; Ouyang J; Zhong SZ
    Di Yi Jun Yi Da Xue Xue Bao; 2005 Oct; 25(10):1244-6. PubMed ID: 16234099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femoral neck strain prediction during level walking using a combined musculoskeletal and finite element model approach.
    Altai Z; Montefiori E; van Veen B; A Paggiosi M; McCloskey EV; Viceconti M; Mazzà C; Li X
    PLoS One; 2021; 16(2):e0245121. PubMed ID: 33524024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.
    Carpenter RD; Beaupré GS; Lang TF; Orwoll ES; Carter DR;
    J Bone Miner Res; 2005 Sep; 20(9):1533-42. PubMed ID: 16059625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Finite element analysis of evaluating the change of the hip joint biomechanics following femoral neck shortening after cannulated screw fixation for osteoporotic femoral neck fracture].
    Yu X; Zhang DF; Song MS; Chen ZM; Yang K; Pang QJ
    Zhonghua Yi Xue Za Zhi; 2020 Sep; 100(33):2628-2632. PubMed ID: 32892611
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.