These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 24746052)

  • 1. Sleep-wake control of the upper airway by noradrenergic neurons, with and without intermittent hypoxia.
    Kubin L
    Prog Brain Res; 2014; 209():255-74. PubMed ID: 24746052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity of pontine A7 noradrenergic neurons is suppressed during REM sleep.
    Fenik VB; Rukhadze I
    J Appl Physiol (1985); 2022 Jul; 133(1):130-143. PubMed ID: 35616303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REM sleep-like atonia of hypoglossal (XII) motoneurons is caused by loss of noradrenergic and serotonergic inputs.
    Fenik VB; Davies RO; Kubin L
    Am J Respir Crit Care Med; 2005 Nov; 172(10):1322-30. PubMed ID: 16100007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chronic intermittent hypoxia on noradrenergic activation of hypoglossal motoneurons.
    Stettner GM; Fenik VB; Kubin L
    J Appl Physiol (1985); 2012 Jan; 112(2):305-12. PubMed ID: 22016369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic intermittent hypoxia alters density of aminergic terminals and receptors in the hypoglossal motor nucleus.
    Rukhadze I; Fenik VB; Benincasa KE; Price A; Kubin L
    Am J Respir Crit Care Med; 2010 Nov; 182(10):1321-9. PubMed ID: 20622040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of hypoglossal inspiratory premotor neurons during the carbachol-induced, REM sleep-like suppression of upper airway motoneurons.
    Woch G; Ogawa H; Davies RO; Kubin L
    Exp Brain Res; 2000 Feb; 130(4):508-20. PubMed ID: 10717792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational model of brain-stem circuit for state-dependent control of hypoglossal motoneurons.
    Naji M; Komarov M; Krishnan GP; Malhotra A; Powell FL; Rukhadze I; Fenik VB; Bazhenov M
    J Neurophysiol; 2018 Jul; 120(1):296-305. PubMed ID: 29617218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian dependence of receptors that mediate wake-related excitatory drive to hypoglossal motoneurons.
    Volgin DV; Stettner GM; Kubin L
    Respir Physiol Neurobiol; 2013 Sep; 188(3):301-7. PubMed ID: 23665050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noradrenergic modulation of hypoglossal motoneuron excitability: developmental and putative state-dependent mechanisms.
    Funk GD; Zwicker JD; Selvaratnam R; Robinson DM
    Arch Ital Biol; 2011 Dec; 149(4):426-53. PubMed ID: 22205594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal development of persistent inward currents in rat XII motoneurons and their modulation by serotonin, muscarine and noradrenaline.
    Revill AL; Chu NY; Ma L; LeBlancq MJ; Dickson CT; Funk GD
    J Physiol; 2019 Jun; 597(12):3183-3201. PubMed ID: 31038198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of hypoglossal motoneurons during the carbachol-induced atonia of REM sleep is not caused by fast synaptic inhibition.
    Kubin L; Kimura H; Tojima H; Davies RO; Pack AI
    Brain Res; 1993 May; 611(2):300-12. PubMed ID: 8334524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endogenous excitatory drive modulating respiratory muscle activity across sleep-wake states.
    Chan E; Steenland HW; Liu H; Horner RL
    Am J Respir Crit Care Med; 2006 Dec; 174(11):1264-73. PubMed ID: 16931636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a pharmacological target for genioglossus reactivation throughout sleep.
    Grace KP; Hughes SW; Horner RL
    Sleep; 2014 Jan; 37(1):41-50. PubMed ID: 24470694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdialysis perfusion of 5-HT into hypoglossal motor nucleus differentially modulates genioglossus activity across natural sleep-wake states in rats.
    Jelev A; Sood S; Liu H; Nolan P; Horner RL
    J Physiol; 2001 Apr; 532(Pt 2):467-81. PubMed ID: 11306665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noradrenergic terminal density varies among different groups of hypoglossal premotor neurons.
    Boyle CE; Parkar A; Barror A; Kubin L
    J Chem Neuroanat; 2019 Oct; 100():101651. PubMed ID: 31128245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catecholaminergic A1/C1 neurons contribute to the maintenance of upper airway muscle tone but may not participate in NREM sleep-related depression of these muscles.
    Rukhadze I; Carballo NJ; Bandaru SS; Malhotra A; Fuller PM; Fenik VB
    Respir Physiol Neurobiol; 2017 Oct; 244():41-50. PubMed ID: 28711601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypoglossal motoneurons are endogenously activated by serotonin during the active period of circadian cycle.
    Kubin L; Mann GL
    Respir Physiol Neurobiol; 2018 Jan; 248():17-24. PubMed ID: 29129751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of pontine noradrenergic A7 cells reduces hypoglossal nerve activity in rats.
    Fenik VB; Rukhadze I; Kubin L
    Neuroscience; 2008 Nov; 157(2):473-82. PubMed ID: 18838113
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Song G; Poon CS
    JCI Insight; 2017 Feb; 2(4):e91456. PubMed ID: 28239660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electromyographic activity at the base and tip of the tongue across sleep-wake states in rats.
    Lu JW; Kubin L
    Respir Physiol Neurobiol; 2009 Jul; 167(3):307-15. PubMed ID: 19539786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.