These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 24746341)
1. Spiropyran-modified gold nanoparticles: reversible size control of aggregates by UV and visible light irradiations. Shiraishi Y; Shirakawa E; Tanaka K; Sakamoto H; Ichikawa S; Hirai T ACS Appl Mater Interfaces; 2014 May; 6(10):7554-62. PubMed ID: 24746341 [TBL] [Abstract][Full Text] [Related]
2. UV/vis and NIR light-responsive spiropyran self-assembled monolayers. Ivashenko O; van Herpt JT; Feringa BL; Rudolf P; Browne WR Langmuir; 2013 Apr; 29(13):4290-7. PubMed ID: 23461631 [TBL] [Abstract][Full Text] [Related]
3. Mapping the fluorescence performance of a photochromic-fluorescent system coupled with gold nanoparticles at the single-molecule-single-particle level. Simoncelli S; Roberti MJ; Araoz B; Bossi ML; AramendÃa PF J Am Chem Soc; 2014 May; 136(19):6878-80. PubMed ID: 24766343 [TBL] [Abstract][Full Text] [Related]
4. Photoisomerization of spiropyran for driving a molecular shuttle. Zhou W; Chen D; Li J; Xu J; Lv J; Liu H; Li Y Org Lett; 2007 Sep; 9(20):3929-32. PubMed ID: 17803314 [TBL] [Abstract][Full Text] [Related]
5. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Liu D; Chen W; Sun K; Deng K; Zhang W; Wang Z; Jiang X Angew Chem Int Ed Engl; 2011 Apr; 50(18):4103-7. PubMed ID: 21452185 [No Abstract] [Full Text] [Related]
6. Photo-, thermally, and pH-responsive microgels. Garcia A; Marquez M; Cai T; Rosario R; Hu Z; Gust D; Hayes M; Vail SA; Park CD Langmuir; 2007 Jan; 23(1):224-9. PubMed ID: 17190508 [TBL] [Abstract][Full Text] [Related]
7. Spiropyran-Functionalized Gold Nanoclusters with Photochromic Ability for Light-Controlled Fluorescence Bioimaging. Cong Y; Wang X; Zhu S; Liu L; Li L ACS Appl Bio Mater; 2021 Mar; 4(3):2790-2797. PubMed ID: 35014318 [TBL] [Abstract][Full Text] [Related]
8. Photomodulation of the electrode potential of a photochromic spiropyran-modified Au electrode in the presence of Zn2+: a new molecular switch based on the electronic transduction of the optical signals. Wen G; Yan J; Zhou Y; Zhang D; Mao L; Zhu D Chem Commun (Camb); 2006 Jul; (28):3016-8. PubMed ID: 16832522 [TBL] [Abstract][Full Text] [Related]
9. Photoreversible fluorescent modulation of nanoparticles via one-step miniemulsion polymerization. Chen J; Zeng F; Wu S; Su J; Tong Z Small; 2009 Apr; 5(8):970-8. PubMed ID: 19235194 [TBL] [Abstract][Full Text] [Related]
10. Characterizing the photoinduced switching process of a nitrospiropyran self-assembled monolayer using in situ sum frequency generation spectroscopy. Darwish TA; Tong Y; James M; Hanley TL; Peng Q; Ye S Langmuir; 2012 Oct; 28(39):13852-60. PubMed ID: 22937910 [TBL] [Abstract][Full Text] [Related]
11. A photoresponsive soft interface reversibly controls wettability and cell adhesion by conformational changes in a spiropyran-conjugated amphiphilic block copolymer. He D; Arisaka Y; Masuda K; Yamamoto M; Takeda N Acta Biomater; 2017 Mar; 51():101-111. PubMed ID: 28110068 [TBL] [Abstract][Full Text] [Related]
12. Spiropyran polymeric microcapillary coatings for photodetection of solvent polarity. Florea L; McKeon A; Diamond D; Benito-Lopez F Langmuir; 2013 Feb; 29(8):2790-7. PubMed ID: 23379723 [TBL] [Abstract][Full Text] [Related]
13. Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor. Shiraishi Y; Adachi K; Itoh M; Hirai T Org Lett; 2009 Aug; 11(15):3482-5. PubMed ID: 19719191 [TBL] [Abstract][Full Text] [Related]
14. Noninvasive and Reversible Cell Adhesion and Detachment via Single-Wavelength Near-Infrared Laser Mediated Photoisomerization. Li W; Chen Z; Zhou L; Li Z; Ren J; Qu X J Am Chem Soc; 2015 Jul; 137(25):8199-205. PubMed ID: 26020685 [TBL] [Abstract][Full Text] [Related]
15. Spiropyran as a reusable chemosensor for selective colorimetric detection of aromatic thiols. Shiraishi Y; Yamamoto K; Sumiya S; Hirai T Phys Chem Chem Phys; 2014 Jun; 16(24):12137-42. PubMed ID: 24616910 [TBL] [Abstract][Full Text] [Related]
16. Tracking the light-induced isomerization processes and the photostability of spiropyrans embedded in the pores of crystalline nanoporous MOFs Schwartz HA; Schaniel D; Ruschewitz U Photochem Photobiol Sci; 2020 Oct; 19(10):1433-1441. PubMed ID: 32991663 [TBL] [Abstract][Full Text] [Related]
17. Coupled molecular motions driven by light or chemical inputs: spiropyran to merocyanine isomerisation followed by pseudorotaxane formation. Hernández-Melo D; Tiburcio J Chem Commun (Camb); 2015 Dec; 51(99):17564-7. PubMed ID: 26478927 [TBL] [Abstract][Full Text] [Related]
18. Adsorption characteristics of spiropyran-modified cationic surfactants at the silica/aqueous solution interface. Sakai K; Imaizumi Y; Oguchi T; Sakai H; Abe M Langmuir; 2010 Jun; 26(12):9283-8. PubMed ID: 20225812 [TBL] [Abstract][Full Text] [Related]
19. Wetting properties of flat and porous silicon surfaces coated with a spiropyran. Dattilo D; Armelao L; Fois G; Mistura G; Maggini M Langmuir; 2007 Dec; 23(26):12945-50. PubMed ID: 18027976 [TBL] [Abstract][Full Text] [Related]
20. Photo-control of the mitotic kinesin Eg5 using a novel photochromic inhibitor composed of a spiropyran derivative. Sadakane K; Takaichi M; Maruta S J Biochem; 2018 Sep; 164(3):239-246. PubMed ID: 29718428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]