These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 24746410)
1. Dextran-protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. Beloqui A; Solinís MÁ; des Rieux A; Préat V; Rodríguez-Gascón A Int J Pharm; 2014 Jul; 468(1-2):105-11. PubMed ID: 24746410 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. Beloqui A; Solinís MÁ; Gascón AR; del Pozo-Rodríguez A; des Rieux A; Préat V J Control Release; 2013 Mar; 166(2):115-23. PubMed ID: 23266764 [TBL] [Abstract][Full Text] [Related]
4. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery. Li H; Chen M; Su Z; Sun M; Ping Q Int J Pharm; 2016 Sep; 511(1):524-537. PubMed ID: 27452421 [TBL] [Abstract][Full Text] [Related]
5. The interaction of protamine nanocapsules with the intestinal epithelium: A mechanistic approach. Thwala LN; Beloqui A; Csaba NS; González-Touceda D; Tovar S; Dieguez C; Alonso MJ; Préat V J Control Release; 2016 Dec; 243():109-120. PubMed ID: 27720993 [TBL] [Abstract][Full Text] [Related]
6. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles. Schimpel C; Teubl B; Absenger M; Meindl C; Fröhlich E; Leitinger G; Zimmer A; Roblegg E Mol Pharm; 2014 Mar; 11(3):808-18. PubMed ID: 24502507 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of CSK-DEX-PLGA Nanoparticles for the Oral Delivery of Exenatide to Improve Its Mucus Penetration and Intestinal Absorption. Song Y; Shi Y; Zhang L; Hu H; Zhang C; Yin M; Chu L; Yan X; Zhao M; Zhang X; Mu H; Sun K Mol Pharm; 2019 Feb; 16(2):518-532. PubMed ID: 30601014 [TBL] [Abstract][Full Text] [Related]
8. Oral delivery system for low molecular weight protamine-dextran-poly(lactic-co-glycolic acid) carrying exenatide to overcome the mucus barrier and improve intestinal targeting efficiency. Song Y; Shi Y; Zhang L; Hu H; Zhang C; Yin M; Zhang X; Sun K Nanomedicine (Lond); 2019 Apr; 14(8):989-1009. PubMed ID: 31088322 [No Abstract] [Full Text] [Related]
9. Solid lipid nanocarriers diffuse effectively through mucus and enter intestinal cells - but where is my peptide? Dumont C; Beloqui A; Miolane C; Bourgeois S; Préat V; Fessi H; Jannin V Int J Pharm; 2020 Aug; 586():119581. PubMed ID: 32603838 [TBL] [Abstract][Full Text] [Related]
10. Nanoarchitectonics of Layer-by-Layer (LbL) coated nanostructured lipid carriers (NLCs) for Enzyme-Triggered charge reversal. Akkuş-Dağdeviren ZB; Fürst A; David Friedl J; Tribus M; Bernkop-Schnürch A J Colloid Interface Sci; 2023 Jan; 629(Pt A):541-553. PubMed ID: 36088699 [TBL] [Abstract][Full Text] [Related]
11. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539 [TBL] [Abstract][Full Text] [Related]
12. Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain. Kuo YC; Wang CC Biotechnol Prog; 2014; 30(1):198-206. PubMed ID: 24167123 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of drug permeation under fed state conditions using mucus-covered Caco-2 cell epithelium. Birch D; Diedrichsen RG; Christophersen PC; Mu H; Nielsen HM Eur J Pharm Sci; 2018 Jun; 118():144-153. PubMed ID: 29524592 [TBL] [Abstract][Full Text] [Related]
14. Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Kuo YC; Su FL Int J Pharm; 2007 Aug; 340(1-2):143-52. PubMed ID: 17418986 [TBL] [Abstract][Full Text] [Related]
15. Cysteine-Functionalized Nanostructured Lipid Carriers for Oral Delivery of Docetaxel: A Permeability and Pharmacokinetic Study. Fang G; Tang B; Chao Y; Xu H; Gou J; Zhang Y; Xu H; Tang X Mol Pharm; 2015 Jul; 12(7):2384-95. PubMed ID: 25974386 [TBL] [Abstract][Full Text] [Related]
16. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Béduneau A; Tempesta C; Fimbel S; Pellequer Y; Jannin V; Demarne F; Lamprecht A Eur J Pharm Biopharm; 2014 Jul; 87(2):290-8. PubMed ID: 24704198 [TBL] [Abstract][Full Text] [Related]
17. HT29-MTX and Caco-2/TC7 monolayers as predictive models for human intestinal absorption: role of the mucus layer. Pontier C; Pachot J; Botham R; Lenfant B; Arnaud P J Pharm Sci; 2001 Oct; 90(10):1608-19. PubMed ID: 11745719 [TBL] [Abstract][Full Text] [Related]
18. Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption. Boegh M; Baldursdóttir SG; Müllertz A; Nielsen HM Eur J Pharm Biopharm; 2014 Jul; 87(2):227-35. PubMed ID: 24413146 [TBL] [Abstract][Full Text] [Related]
19. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Gaba B; Fazil M; Ali A; Baboota S; Sahni JK; Ali J Drug Deliv; 2015; 22(6):691-700. PubMed ID: 24670099 [TBL] [Abstract][Full Text] [Related]
20. SEDDS for intestinal absorption of insulin: Application of Caco-2 and Caco-2/HT29 co-culture monolayers and intra-jejunal instillation in rats. Liu J; Werner U; Funke M; Besenius M; Saaby L; Fanø M; Mu H; Müllertz A Int J Pharm; 2019 Apr; 560():377-384. PubMed ID: 30790612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]