These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2474658)

  • 1. Pattern analysis of RNA secondary structure similarity and consensus of minimal-energy folding.
    Konings DA; Hogeweg P
    J Mol Biol; 1989 Jun; 207(3):597-614. PubMed ID: 2474658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-aided prediction of RNA secondary structures.
    Auron PE; Rindone WP; Vary CP; Celentano JJ; Vournakis JN
    Nucleic Acids Res; 1982 Jan; 10(1):403-19. PubMed ID: 6174937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of the folding consensus in RNA secondary structures by the topological-filtering method.
    Benedetti G; Morosetti S
    Eur J Biochem; 1991 Dec; 202(2):241-8. PubMed ID: 1722147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A method for predicting common structures of homologous RNAs.
    Le SY; Zhang K; Maizel JV
    Comput Biomed Res; 1995 Feb; 28(1):53-66. PubMed ID: 7542191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering of RNA secondary structures with application to messenger RNAs.
    Ding Y; Chan CY; Lawrence CE
    J Mol Biol; 2006 Jun; 359(3):554-71. PubMed ID: 16631786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel models for RNA splicing that involve a small nuclear RNA.
    Ohshima Y; Itoh M; Okada N; Miyata T
    Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4471-4. PubMed ID: 6170064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the highly divergent U2 RNA homolog in the microsporidian Vairimorpha necatrix.
    DiMaria P; Palic B; Debrunner-Vossbrinck BA; Lapp J; Vossbrinck CR
    Nucleic Acids Res; 1996 Feb; 24(3):515-22. PubMed ID: 8602366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting common foldings of homologous RNAs.
    Le SY; Zuker M
    J Biomol Struct Dyn; 1991 Apr; 8(5):1027-44. PubMed ID: 1715169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consensus folding of unaligned RNA sequences revisited.
    Bafna V; Tang H; Zhang S
    J Comput Biol; 2006 Mar; 13(2):283-95. PubMed ID: 16597240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure model for mouse beta Maj globin mRNA derived from enzymatic digestion data, comparative sequence and computer analysis.
    Lockard RE; Currey K; Browner M; Lawrence C; Maizel J
    Nucleic Acids Res; 1986 Jul; 14(14):5827-41. PubMed ID: 3737415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method to find a set of energetically optimal RNA secondary structures.
    Benedetti G; De Santis P; Morosetti S
    Nucleic Acids Res; 1989 Jul; 17(13):5149-61. PubMed ID: 2474795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic matchers for the construction of the cuckoo RNA family.
    Reinkensmeier J; Giegerich R
    RNA Biol; 2015; 12(2):197-207. PubMed ID: 25779873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure.
    Lück R; Gräf S; Steger G
    Nucleic Acids Res; 1999 Nov; 27(21):4208-17. PubMed ID: 10518612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic prediction of conserved secondary structure: application to the RRE element of HIV, the tRNA-like element of CMV and the mRNA of prion protein.
    Lück R; Steger G; Riesner D
    J Mol Biol; 1996 May; 258(5):813-26. PubMed ID: 8637012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A graph-topological approach to recognition of pattern and similarity in RNA secondary structures.
    Benedetti G; Morosetti S
    Biophys Chem; 1996 Mar; 59(1-2):179-84. PubMed ID: 8867337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of frequently recurring substructures in human alpha-like globin mRNA precursors.
    Le SY; Currey KM; Nussinov R; Maizel JV
    Comput Biomed Res; 1987 Dec; 20(6):563-82. PubMed ID: 3691069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secondary structure of mouse and rabbit alpha- and beta-globin mRNAs: differential accessibility of alpha and beta initiator AUG codons towards nucleases.
    Pavlakis GN; Lockard RE; Vamvakopoulos N; Rieser L; RajBhandary UL; Vournakis JN
    Cell; 1980 Jan; 19(1):91-102. PubMed ID: 7357610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. No evidence that mRNAs have lower folding free energies than random sequences with the same dinucleotide distribution.
    Workman C; Krogh A
    Nucleic Acids Res; 1999 Dec; 27(24):4816-22. PubMed ID: 10572183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence of the 3' terminal third of rabbit alpha-globin messenger RNA: comparison with human alpha-globin messenger RNA.
    Proudfoot NJ; Gillam S; Smith M; Longley JI
    Cell; 1977 Aug; 11(4):807-18. PubMed ID: 70277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA folding is unaffected by the nonrandom degenerate codon choice.
    Nussinov R
    Biochim Biophys Acta; 1982 Aug; 698(2):111-5. PubMed ID: 7126583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.