These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 24746925)
1. Spatial and temporal observation of phase-shift nano-emulsions assisted cavitation and ablation during focused ultrasound exposure. Qiao Y; Zong Y; Yin H; Chang N; Li Z; Wan M Ultrason Sonochem; 2014 Sep; 21(5):1745-51. PubMed ID: 24746925 [TBL] [Abstract][Full Text] [Related]
2. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU. Yin H; Chang N; Xu S; Wan M Ultrason Sonochem; 2016 Sep; 32():158-164. PubMed ID: 27150756 [TBL] [Abstract][Full Text] [Related]
3. Intracranial Non-thermal Ablation Mediated by Transcranial Focused Ultrasound and Phase-Shift Nanoemulsions. Peng C; Sun T; Vykhodtseva N; Power C; Zhang Y; Mcdannold N; Porter T Ultrasound Med Biol; 2019 Aug; 45(8):2104-2117. PubMed ID: 31101446 [TBL] [Abstract][Full Text] [Related]
4. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method. Xu S; Zong Y; Li W; Zhang S; Wan M Ultrason Sonochem; 2014 May; 21(3):975-83. PubMed ID: 24360840 [TBL] [Abstract][Full Text] [Related]
5. An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation. Zhang P; Porter T Ultrasound Med Biol; 2010 Nov; 36(11):1856-66. PubMed ID: 20888685 [TBL] [Abstract][Full Text] [Related]
6. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field. Cao H; Wan M; Qiao Y; Zhang S; Li R Ultrason Sonochem; 2012 Mar; 19(2):257-63. PubMed ID: 21862375 [TBL] [Abstract][Full Text] [Related]
7. In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions. Puett C; Phillips LC; Sheeran PS; Dayton PA J Ther Ultrasound; 2013; 1():16. PubMed ID: 25512861 [TBL] [Abstract][Full Text] [Related]
8. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets. Chang N; Lu S; Qin D; Xu T; Han M; Wang S; Wan M Ultrason Sonochem; 2018 Jul; 45():57-64. PubMed ID: 29705325 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous Passive Acoustic Mapping and Magnetic Resonance Thermometry for Monitoring of Cavitation-Enhanced Tumor Ablation in Rabbits Using Focused Ultrasound and Phase-Shift Nanoemulsions. Crake C; Papademetriou IT; Zhang Y; Vykhodtseva N; McDannold NJ; Porter TM Ultrasound Med Biol; 2018 Dec; 44(12):2609-2624. PubMed ID: 30201425 [TBL] [Abstract][Full Text] [Related]
10. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound. Ding T; Zhang S; Fu Q; Xu Z; Wan M Ultrasonics; 2014 Jan; 54(1):147-55. PubMed ID: 23673346 [TBL] [Abstract][Full Text] [Related]
11. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy. Hockham N; Coussios CC; Arora M IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364 [TBL] [Abstract][Full Text] [Related]
12. The impact of vaporized nanoemulsions on ultrasound-mediated ablation. Zhang P; Kopechek JA; Porter TM J Ther Ultrasound; 2013; 1():2. PubMed ID: 24761223 [TBL] [Abstract][Full Text] [Related]
13. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field. Chen H; Li X; Wan M Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378 [TBL] [Abstract][Full Text] [Related]
14. Acoustic Cavitation Enhances Focused Ultrasound Ablation with Phase-Shift Inorganic Perfluorohexane Nanoemulsions: An In Vitro Study Using a Clinical Device. Zhao LY; Zou JZ; Chen ZG; Liu S; Jiao J; Wu F Biomed Res Int; 2016; 2016():7936902. PubMed ID: 27419138 [TBL] [Abstract][Full Text] [Related]
15. Acoustic droplet vaporization and inertial cavitation thresholds and efficiencies of nanodroplets emulsions inside the focused region using a dual-frequency ring focused ultrasound. Xu S; Chang N; Wang R; Liu X; Guo S; Wang S; Zong Y; Wan M Ultrason Sonochem; 2018 Nov; 48():532-537. PubMed ID: 30080582 [TBL] [Abstract][Full Text] [Related]
16. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU). Zhou Y; Gao XW Phys Med Biol; 2016 Sep; 61(18):6651-6667. PubMed ID: 27541633 [TBL] [Abstract][Full Text] [Related]
17. An adaptive spectral estimation technique to detect cavitation in HIFU with high spatial resolution. Hsieh CY; Probert Smith P; Mayia F; Ye G Ultrasound Med Biol; 2011 Jul; 37(7):1134-50. PubMed ID: 21684454 [TBL] [Abstract][Full Text] [Related]
18. Passive spatial mapping of inertial cavitation during HIFU exposure. Gyöngy M; Coussios CC IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450 [TBL] [Abstract][Full Text] [Related]
19. Spatial distribution of acoustic cavitation bubbles at different ultrasound frequencies. Ashokkumar M; Lee J; Iida Y; Yasui K; Kozuka T; Tuziuti T; Towata A Chemphyschem; 2010 Jun; 11(8):1680-4. PubMed ID: 20301178 [TBL] [Abstract][Full Text] [Related]
20. Nanoparticle-Mediated Acoustic Cavitation Enables High Intensity Focused Ultrasound Ablation Without Tissue Heating. Yildirim A; Shi D; Roy S; Blum NT; Chattaraj R; Cha JN; Goodwin AP ACS Appl Mater Interfaces; 2018 Oct; 10(43):36786-36795. PubMed ID: 30339360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]