BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24747018)

  • 1. The role of choroid plexus in IVIG-induced beta-amyloid clearance.
    Gu H; Zhong Z; Jiang W; Du E; Dodel R; Farlow MR; Zheng W; Du Y
    Neuroscience; 2014 Jun; 270():168-176. PubMed ID: 24747018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead exposure increases levels of β-amyloid in the brain and CSF and inhibits LRP1 expression in APP transgenic mice.
    Gu H; Wei X; Monnot AD; Fontanilla CV; Behl M; Farlow MR; Zheng W; Du Y
    Neurosci Lett; 2011 Feb; 490(1):16-20. PubMed ID: 21167913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ADAM10 promotes the clearance of Aβ across the BBB by reducing LRP1 ectodomain shedding.
    Shackleton B; Crawford F; Bachmeier C
    Fluids Barriers CNS; 2016 Aug; 13(1):14. PubMed ID: 27503326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased beta-amyloid levels in the choroid plexus following lead exposure and the involvement of low-density lipoprotein receptor protein-1.
    Behl M; Zhang Y; Monnot AD; Jiang W; Zheng W
    Toxicol Appl Pharmacol; 2009 Oct; 240(2):245-54. PubMed ID: 19501112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal clearance of amyloid-β by endocytic receptor LRP1.
    Kanekiyo T; Cirrito JR; Liu CC; Shinohara M; Li J; Schuler DR; Shinohara M; Holtzman DM; Bu G
    J Neurosci; 2013 Dec; 33(49):19276-83. PubMed ID: 24305823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of LRP1 in Aβ efflux transport across the blood-brain barrier and cognitive dysfunction in diabetes mellitus.
    P X; Zz L; Gg J; Lp W; Cm B; Yl W; Chen MF; W L
    Neurochem Int; 2022 Nov; 160():105417. PubMed ID: 36067928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance.
    Singh I; Sagare AP; Coma M; Perlmutter D; Gelein R; Bell RD; Deane RJ; Zhong E; Parisi M; Ciszewski J; Kasper RT; Deane R
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14771-6. PubMed ID: 23959870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.
    Kanekiyo T; Liu CC; Shinohara M; Li J; Bu G
    J Neurosci; 2012 Nov; 32(46):16458-65. PubMed ID: 23152628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparan sulphate proteoglycan and the low-density lipoprotein receptor-related protein 1 constitute major pathways for neuronal amyloid-beta uptake.
    Kanekiyo T; Zhang J; Liu Q; Liu CC; Zhang L; Bu G
    J Neurosci; 2011 Feb; 31(5):1644-51. PubMed ID: 21289173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A lipoprotein receptor cluster IV mutant preferentially binds amyloid-β and regulates its clearance from the mouse brain.
    Sagare AP; Bell RD; Srivastava A; Sengillo JD; Singh I; Nishida Y; Chow N; Zlokovic BV
    J Biol Chem; 2013 May; 288(21):15154-66. PubMed ID: 23580652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human intravenous immunoglobulin provides protection against Aβ toxicity by multiple mechanisms in a mouse model of Alzheimer's disease.
    Magga J; Puli L; Pihlaja R; Kanninen K; Neulamaa S; Malm T; Härtig W; Grosche J; Goldsteins G; Tanila H; Koistinaho J; Koistinaho M
    J Neuroinflammation; 2010 Dec; 7():90. PubMed ID: 21138577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered clearance of beta-amyloid from the cerebrospinal fluid following subchronic lead exposure in rats: Roles of RAGE and LRP1 in the choroid plexus.
    Shen X; Xia L; Liu L; Jiang H; Shannahan J; Du Y; Zheng W
    J Trace Elem Med Biol; 2020 Apr; 61():126520. PubMed ID: 32325398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transthyretin stability is critical in assisting beta amyloid clearance- Relevance of transthyretin stabilization in Alzheimer's disease.
    Alemi M; Silva SC; Santana I; Cardoso I
    CNS Neurosci Ther; 2017 Jul; 23(7):605-619. PubMed ID: 28570028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism.
    Ma Q; Zhao Z; Sagare AP; Wu Y; Wang M; Owens NC; Verghese PB; Herz J; Holtzman DM; Zlokovic BV
    Mol Neurodegener; 2018 Oct; 13(1):57. PubMed ID: 30340601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead-induced accumulation of beta-amyloid in the choroid plexus: role of low density lipoprotein receptor protein-1 and protein kinase C.
    Behl M; Zhang Y; Shi Y; Cheng J; Du Y; Zheng W
    Neurotoxicology; 2010 Sep; 31(5):524-32. PubMed ID: 20488202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amylin Enhances Amyloid-β Peptide Brain to Blood Efflux Across the Blood-Brain Barrier.
    Mohamed LA; Zhu H; Mousa YM; Wang E; Qiu WQ; Kaddoumi A
    J Alzheimers Dis; 2017; 56(3):1087-1099. PubMed ID: 28059785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,25-Dihydroxyvitamin D3 regulates expression of LRP1 and RAGE in vitro and in vivo, enhancing Aβ1-40 brain-to-blood efflux and peripheral uptake transport.
    Guo YX; He LY; Zhang M; Wang F; Liu F; Peng WX
    Neuroscience; 2016 May; 322():28-38. PubMed ID: 26820600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aβ levels in the jugular vein and high molecular weight Aβ oligomer levels in CSF can be used as biomarkers to indicate the anti-amyloid effect of IVIg for Alzheimer's disease.
    Kasai T; Kondo M; Ishii R; Tanaka A; Ataka S; Shimada H; Tomiyama T; Mori H; Taylor M; Allsop D; Nakagawa M; Mizuno T; Tokuda T
    PLoS One; 2017; 12(4):e0174630. PubMed ID: 28394917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced brain amyloid-β clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer's disease.
    Qosa H; Abuznait AH; Hill RA; Kaddoumi A
    J Alzheimers Dis; 2012; 31(1):151-65. PubMed ID: 22504320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in amyloid-β clearance across mouse and human blood-brain barrier models: kinetic analysis and mechanistic modeling.
    Qosa H; Abuasal BS; Romero IA; Weksler B; Couraud PO; Keller JN; Kaddoumi A
    Neuropharmacology; 2014 Apr; 79():668-78. PubMed ID: 24467845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.