BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24747046)

  • 1. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.
    Wriessnegger T; Augustin P; Engleder M; Leitner E; Müller M; Kaluzna I; Schürmann M; Mink D; Zellnig G; Schwab H; Pichler H
    Metab Eng; 2014 Jul; 24():18-29. PubMed ID: 24747046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering Saccharomyces cerevisiae for de novo production of the sesquiterpenoid (+)-nootkatone.
    Meng X; Liu H; Xu W; Zhang W; Wang Z; Liu W
    Microb Cell Fact; 2020 Feb; 19(1):21. PubMed ID: 32013959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepwise engineering of
    Ouyang X; Cha Y; Li W; Zhu C; Zhu M; Li S; Zhuo M; Huang S; Li J
    RSC Adv; 2019 Sep; 9(52):30171-30181. PubMed ID: 35530214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene.
    Beekwilder J; van Houwelingen A; Cankar K; van Dijk AD; de Jong RM; Stoopen G; Bouwmeester H; Achkar J; Sonke T; Bosch D
    Plant Biotechnol J; 2014 Feb; 12(2):174-82. PubMed ID: 24112147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Over-expression of ICE2 stabilizes cytochrome P450 reductase in Saccharomyces cerevisiae and Pichia pastoris.
    Emmerstorfer A; Wimmer-Teubenbacher M; Wriessnegger T; Leitner E; Müller M; Kaluzna I; Schürmann M; Mink D; Zellnig G; Schwab H; Pichler H
    Biotechnol J; 2015 Apr; 10(4):623-35. PubMed ID: 25641738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valencene oxidase CYP706M1 from Alaska cedar (Callitropsis nootkatensis).
    Cankar K; van Houwelingen A; Goedbloed M; Renirie R; de Jong RM; Bouwmeester H; Bosch D; Sonke T; Beekwilder J
    FEBS Lett; 2014 Mar; 588(6):1001-7. PubMed ID: 24530525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing cytochrome P450-mediated conversions in P. pastoris through RAD52 over-expression and optimizing the cultivation conditions.
    Wriessnegger T; Moser S; Emmerstorfer-Augustin A; Leitner E; Müller M; Kaluzna I; Schürmann M; Mink D; Pichler H
    Fungal Genet Biol; 2016 Apr; 89():114-125. PubMed ID: 26898115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the Synergistic Ratio of P450/CPR To Improve (+)-Nootkatone Production in
    Cha Y; Li W; Wu T; You X; Chen H; Zhu C; Zhuo M; Chen B; Li S
    J Agric Food Chem; 2022 Jan; 70(3):815-825. PubMed ID: 35015539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling cell growth and biochemical pathway induction in Saccharomyces cerevisiae for production of (+)-valencene and its chemical conversion to (+)-nootkatone.
    Ye Z; Huang Y; Shi B; Xiang Z; Tian Z; Huang M; Wu L; Deng Z; Shen K; Liu T
    Metab Eng; 2022 Jul; 72():107-115. PubMed ID: 35296429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances on (+)-nootkatone microbial biosynthesis and its related enzymes.
    Li X; Ren JN; Fan G; Zhang LL; Pan SY
    J Ind Microbiol Biotechnol; 2021 Aug; 48(7-8):. PubMed ID: 34279658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae.
    Gavira C; Höfer R; Lesot A; Lambert F; Zucca J; Werck-Reichhart D
    Metab Eng; 2013 Jul; 18():25-35. PubMed ID: 23518241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel short chain dehydrogenase from Bacillus megaterium for the conversion of the sesquiterpene nootkatol to (+)-nootkatone.
    Milhim M; Hartz P; Gerber A; Bernhardt R
    J Biotechnol; 2019 Aug; 301():52-55. PubMed ID: 31150680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Nootkatone Biosynthesis in
    Gou Y; Zhang F; Tang Y; Jiang C; Bai G; Xie H; Chen M; Liao Z
    ACS Synth Biol; 2021 May; 10(5):957-963. PubMed ID: 33973783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete pathway elucidation and heterologous reconstitution of (+)-nootkatone biosynthesis from Alpinia oxyphylla.
    Deng X; Ye Z; Duan J; Chen F; Zhi Y; Huang M; Huang M; Cheng W; Dou Y; Kuang Z; Huang Y; Bian G; Deng Z; Liu T; Lu L
    New Phytol; 2024 Jan; 241(2):779-792. PubMed ID: 37933426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Stable integration sites in
    Chen D; Zhu C; Chen H; Zhou J; Li S
    Sheng Wu Gong Cheng Xue Bao; 2024 Jun; 40(6):1924-1934. PubMed ID: 38914501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and transcriptomic analysis screening key genes for (+)-valencene biotransformation to (+)-nootkatone in Yarrowia lipolytica.
    Li X; Ren JN; Fan G; He J; Zhang LL; Pan SY
    Microbiol Res; 2022 Jul; 260():127042. PubMed ID: 35483313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nootkatone--a biotechnological challenge.
    Fraatz MA; Berger RG; Zorn H
    Appl Microbiol Biotechnol; 2009 May; 83(1):35-41. PubMed ID: 19333595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system.
    Girhard M; Machida K; Itoh M; Schmid RD; Arisawa A; Urlacher VB
    Microb Cell Fact; 2009 Jul; 8():36. PubMed ID: 19591681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green Production of a High-value Mosquito Insecticide of Nootkatone from Seaweed Hydrolysates.
    Ma L; Wu T; Liu P; Chen D; Cai S; Chen H; Zhou J; Zhu C; Li S
    J Agric Food Chem; 2023 Dec; 71(48):18919-18927. PubMed ID: 37991146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae.
    Zhang C; Liu J; Zhao F; Lu C; Zhao GR; Lu W
    Metab Eng; 2018 Sep; 49():28-35. PubMed ID: 30031850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.