BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 24747078)

  • 61. Dynein arms are strain-dependent direction-switching force generators.
    Shingyoji C; Nakano I; Inoue Y; Higuchi H
    Cytoskeleton (Hoboken); 2015 Aug; 72(8):388-401. PubMed ID: 26242795
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nucleotide specificity of the enzymatic and motile activities of dynein, kinesin, and heavy meromyosin.
    Shimizu T; Furusawa K; Ohashi S; Toyoshima YY; Okuno M; Malik F; Vale RD
    J Cell Biol; 1991 Mar; 112(6):1189-97. PubMed ID: 1825661
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Targeted gene disruption of dynein heavy chain 7 of Tetrahymena thermophila results in altered ciliary waveform and reduced swim speed.
    Wood CR; Hard R; Hennessey TM
    J Cell Sci; 2007 Sep; 120(Pt 17):3075-85. PubMed ID: 17684060
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The dynein heavy chain family.
    Asai DJ; Wilkes DE
    J Eukaryot Microbiol; 2004; 51(1):23-9. PubMed ID: 15068262
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Force-Generating Mechanism of Axonemal Dynein in Solo and Ensemble.
    Ishibashi K; Sakakibara H; Oiwa K
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32325779
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Axonemal beta heavy chain dynein DNAH9: cDNA sequence, genomic structure, and investigation of its role in primary ciliary dyskinesia.
    Bartoloni L; Blouin JL; Maiti AK; Sainsbury A; Rossier C; Gehrig C; She JX; Marron MP; Lander ES; Meeks M; Chung E; Armengot M; Jorissen M; Scott HS; Delozier-Blanchet CD; Gardiner RM; Antonarakis SE
    Genomics; 2001 Feb; 72(1):21-33. PubMed ID: 11247663
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ciliary Motility: Regulation of Axonemal Dynein Motors.
    Viswanadha R; Sale WS; Porter ME
    Cold Spring Harb Perspect Biol; 2017 Aug; 9(8):. PubMed ID: 28765157
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tubulin glutamylation regulates ciliary motility by altering inner dynein arm activity.
    Suryavanshi S; Eddé B; Fox LA; Guerrero S; Hard R; Hennessey T; Kabi A; Malison D; Pennock D; Sale WS; Wloga D; Gaertig J
    Curr Biol; 2010 Mar; 20(5):435-40. PubMed ID: 20189389
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Biochemistry of dynein and its role in cell motility.
    Mabuchi I
    Horiz Biochem Biophys; 1978; 5():1-36. PubMed ID: 28273
    [No Abstract]   [Full Text] [Related]  

  • 70. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation.
    Wirschell M; Hendrickson T; Sale WS
    Cell Motil Cytoskeleton; 2007 Aug; 64(8):569-79. PubMed ID: 17549744
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Alloaffinity filtration: a general approach to the purification of dynein and dynein-like molecules.
    Nasr A; Satir P
    Anal Biochem; 1985 Nov; 151(1):97-108. PubMed ID: 2936272
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules.
    King SM; Patel-King RS
    J Biol Chem; 2015 Mar; 290(12):7388-401. PubMed ID: 25572396
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Flagellar and ciliary beating: the proven and the possible.
    Lindemann CB; Lesich KA
    J Cell Sci; 2010 Feb; 123(Pt 4):519-28. PubMed ID: 20145000
    [TBL] [Abstract][Full Text] [Related]  

  • 74. How signals of calcium ions initiate the beats of cilia and flagella.
    Satarić MV; Nemeš T; Sekulić D; Tuszynski JA
    Biosystems; 2019 Aug; 182():42-51. PubMed ID: 31202860
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High speed sliding of axonemal microtubules produced by outer arm dynein.
    Seetharam RN; Satir P
    Cell Motil Cytoskeleton; 2005 Feb; 60(2):96-103. PubMed ID: 15605357
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation.
    Lindemann CB
    Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulation of motor activity of ciliary outer-arm dynein by the light chain 1; Implications from the structure of the light chain bound to the microtubule-binding domain of the heavy chain.
    Yagi T; Toda A; Ichikawa M; Kurisu G
    Biophys Physicobiol; 2023; 20(1):e200008. PubMed ID: 37234853
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Synthetic Minimal Beating Axoneme.
    Guido I; Vilfan A; Ishibashi K; Sakakibara H; Shiraga M; Bodenschatz E; Golestanian R; Oiwa K
    Small; 2022 Aug; 18(32):e2107854. PubMed ID: 35815940
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identification of dynein heavy chain genes expressed in human and mouse testis: chromosomal localization of an axonemal dynein gene.
    Neesen J; Koehler MR; Kirschner R; Steinlein C; Kreutzberger J; Engel W; Schmid M
    Gene; 1997 Oct; 200(1-2):193-202. PubMed ID: 9373155
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microtubule binding protein PACRG plays a role in regulating specific ciliary dyneins during microtubule sliding.
    Mizuno K; Dymek EE; Smith EF
    Cytoskeleton (Hoboken); 2016 Dec; 73(12):703-711. PubMed ID: 27770595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.